具有脱碳目标的公司和城市必须通过在年度区域不合时宜的基础上使用可再生能源证书(REC)来抵消化石燃料功耗来实现绿色能源的成就。在2018年,Google宣布了与消费的区域产生的零碳能量采购的脱碳和风险管理益处,并断言网格深度脱碳的途径将需要解决方案,以确保所有地区始终在所有地区的所有地区。本论文探讨了使用风,太阳能光伏(PV)和锂离子电池电池储能系统(BES)的可行性,以在德克萨斯州提供竞争性的24x7负载匹配功率,在这些技术中,这些技术在其中占95%的电厂Queue,以互助电动性可靠性委员会(ERCOLISIOL COLLECTECT)(ERC)(ERC)(ERC)(ERC)。分析的第一阶段开发了一个线性计划,该计划可以确定大量的风,PV和四小时的锂离子贝丝容量,能够在一年中每小时为数据中心的负载提供服务。在分析的第二阶段,税务中立的财务模型比较了优化的投资组合中用用案例的未覆盖经济学比较,包括在商人的基础上销售电力生产,使用bess销售辅助服务,并出售长期24x7可再生能源服务。线性程序发现能够为稳定的50 MW负载提供服务的最低成本24x7投资组合包括平均77 MW太阳能PV,78 MW沿海风,74 MW North Texas Wind和165 MW / 660 MW / 660 MWH BESS。以每千瓦时300美元的价格成本为$ 300,当负载匹配服务以长期平均批发能源价格定价时,具有24x7功能的可再生能源投资组合以充分的商人PV +风用案例达到经济奇偶校验。尽管需要进一步的研究来评估风险管理成本,但该分析提供了最初的迹象,表明24x7负载匹配服务可能是经济上可行的长期合同途径,在拥有多样化的间歇性资源和BESS服务批发市场的地区。
摘要:为实现更薄的微电子封装,生产所需厚度的新型半导体硅片不仅需要高成本和能源,而且还会造成环境污染问题。然而,这一问题可以通过使用一步化学蚀刻来生产所需厚度的硅芯片以进行适当的封装,从而简单地解决。在本研究中,使用各向同性的湿化学蚀刻法,通过改变HF蚀刻剂浓度来研究蚀刻时间对HF/HNO 3 /CH 3 COOH混合溶液中的Si晶片的影响。研究的蚀刻时间为5分钟至30分钟,HF蚀刻剂浓度在(20-24)wt%范围内。从结果可以看出,随着蚀刻时间的延长,重量损失和蚀刻深度的变化单调增加。然后根据重量损失和蚀刻深度随时间的变化来确定蚀刻速率。结果表明,Si晶片的蚀刻速率随时间降低,在较高的HF浓度下增大。在光学显微镜下观察到蚀刻后Si晶片的表面变得光滑抛光。 X 射线衍射图表明,蚀刻硅的晶体峰强度高于纯硅,随着 HF 浓度的增加,与 Si 相关的峰略微向 2θ 方向移动。目前的发现表明,化学蚀刻硅晶片的所需厚度可以潜在地装入微电子设备制造的更薄的封装中,从而减少能源和成本浪费,实现未来的可持续发展。
本书.................... ... ................. ... ................. ... ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................14
我们的精神我们的学生是我们的大学。拥抱他们的文化,创建以学生为中心的结构并共同创建项目,使我们所有人都可以共同发展并成为鼓舞人心的卓越中心。
我们与雇主保持一致我们的员工提供真实的实践和基于工作的学习机会,旨在培养具有进取心和创业精神的毕业生,他们拥有在工作场所蓬勃发展的技能和特质。就业能力是我们所有课程设计不可或缺的一部分。我们是一个学习型社区学生和教职员工共同制作和创造学生体验。我们致力于终身学习,我们过去和现在的所有学生都是我们全球社区的重要成员。我们开放、平易近人、包容性强多样性是我们的优势,丰富了我们所做的一切。我们的员工和学生来自各种各样的背景和文化,无论背景如何,都可以在我们这里取得成功。开创性的研究、广泛的绩效数据和利益相关者的反馈有助于我们理解和解决不平等问题。
摘要 近年来,锕系元素可迁移分数在污染场地风险评估中的重要性日益增加。了解238 U和232 Th在放射性废物上的吸附动力学和吸附过程的热力学对于理解它们的迁移率非常重要。本研究研究了莱纳斯先进材料厂水浸净化 (WLP) 残渣中 238 U和232 Th 的浸出过程,采用合成沉淀浸出程序与间歇法相结合的方式,模拟酸雨和严重水灾,获得了最佳浸出条件。研究了WLP 残渣中 238 U和232 Th 的初始浓度,以及在不同pH值和接触时间下238 U和232 Th 的浓度。结果表明,WLP 残渣中 238 U和232 Th的初始浓度分别为 6.6 和 206.1 mg/kg。总体而言,238 U 和 232 Th 浸出过程后浓度的最高值分别为 0.363 和 8.288 mg/kg。这些结果表明,在 pH 为 4 且接触时间相同(14 天)的情况下,238 U 和 232 Th 的最大再迁移潜力。在类似的持续时间内,238 U 和 232 Th 的最大浸出百分比分别为 5.50% 和 3.99%。此外,在 pH 为 7 时,238 U 和 232 Th 的最小浸出百分比分别为 4.7% 和 3.61%。因此,238 U 和 232 Th 的再迁移表明,浸出速率受所用浸出剂的 pH 值影响。 238 U 和 232 Th 的最大浓度是在 pH 值较低(例如 pH 4)时获得的。在 pH 值为 7 和 8 时,238 U 和 232 Th 的浸出量最小。因此,结合 SPLP 和批量方法对于估计 WLP 残渣中 232 Th 和 238 U 的浸出和再动员是可行的。组合方法可能有助于环境研究中的监测和风险评估。关键词:浸出、WLP 残渣、铀、钍
关键词:立体匹配,半全局匹配,SIFT,密集匹配,视差估计,普查 摘要:半全局匹配(SGM)通过平等对待不同路径方向进行动态规划。它没有考虑不同路径方向对成本聚合的影响,并且随着视差搜索范围的扩大,算法的准确性和效率急剧下降。本文提出了一种融合SIFT和SGM的密集匹配算法。该算法以SIFT匹配的成功匹配对为控制点,在动态规划中指导路径,并截断误差传播。此外,利用检测到的特征点的梯度方向来修改不同方向上的路径权重,可以提高匹配精度。基于 Middlebury 立体数据集和 CE-3 月球数据集的实验结果表明,所提算法能有效切断误差传播,缩小视差搜索范围,提高匹配精度。
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
高密度航空影像匹配:最新技术与未来前景 N. Haala a*、S. Cavegn a、b a 德国斯图加特大学摄影测量研究所 - norbert.haala@ifp.uni-stuttgart.de b 瑞士西北应用科学与艺术大学测绘工程研究所,瑞士穆滕茨 - stefan.cavegn@fhnw.ch SpS 12 - EuroSDR:NMCA 的创新技术和方法 关键词:匹配、表面、三维、点云、融合、三角测量 摘要:匹配算法的不断创新正在不断提高从航空影像自动生成的几何表面表示的质量。这一发展推动了 ISPRS/EuroSDR 联合项目“高密度航空图像匹配基准”的启动,该项目旨在根据密集多视图立体图像匹配的当前发展情况,对摄影测量 3D 数据捕获进行评估。最初,测试针对不同土地利用和图像块配置的传统航空图像飞行进行基于图像的 DSM 计算。第二阶段将重点放在复杂城市地区的高质量、高分辨率 3D 几何数据捕获上。这包括将测试场景扩展到倾斜航空图像飞行以及生成过滤点云作为相应多视图重建的附加输出。本文使用基准的初步结果来演示