2024 年 11 月 13 日 亲爱的同事和朋友们: 欢迎来到弗吉尼亚州阿灵顿和 CONFERS 第七届年度全球卫星服务论坛和展览会!作为 CONFERS 主席,我要感谢你们每个人抽出时间和投资来到这里。我还要感谢志愿者成员,他们共同打造了这个出色的、同行开发的计划;同意参与并分享见解的演讲者;以及我们的赞助商、参展商和广告商,感谢他们为实现这一切提供的资金支持。您将听到的演讲者的演讲和接下来两天将要讨论的主题正在推动蓬勃发展的 OOS(在轨服务)行业的持续接受和成熟。我们共同创造了一个生态系统,它有可能改变太空经济,推动可持续发展并创造商业。 CONFERS 成员和更广泛的 ISAM(太空服务、装配和制造)社区正在开发技术并制定政策,这些政策将带来一系列轨道服务——维护、维修、制造、重新利用、装配、检查、加油、延长寿命和清除碎片,仅举几例。这项业务不仅限于地球轨道,还涉及地月空间及更远的地方。CONFERS 的目标是让你们每个人和你们的公司——无论是初创公司还是老牌公司——都能意识到新太空经济的机遇并做好准备采取行动。所以,请享受我们的主题演讲和小组讨论;提出问题并参与对话;参观我们的桌面展商;不要忘记在我们的交流早餐、休息、午餐和招待会期间与同事互动。我们都是可持续、可服务的轨道生态系统创建的一部分——这一切都与灵活和可持续的空间基础设施和物流有关,因此,OOS ≠ 只有一个解决方案!所以,在 CONFERSations 中发表你的声音吧! 真挚地,
为即将到来的太空任务提供导航和通信服务的卫星星座 Telespazio 是莱昂纳多 (67%) 和泰雷兹 (33%) 的合资企业,今天在米兰与欧洲空间局 (ESA) 签署了一份价值 1.23 亿欧元的合同,用于实施月光计划的第一阶段。Telespazio 将牵头一个欧洲公司联盟,负责监督卫星星座的研发,为未来的月球任务提供导航和通信服务。该联盟包括 Telespazio(负责整个系统的总承包商)以及包括 Hispasat、Viasat、Thales Alenia Space Italia、SSTL、Qascom、MDA、KSat、Telespazio UK、Telespazio Iberica、SDA Bocconi、PLIMI、CRAS 和 SI 在内的多家公司,负责该系统的设计、实施和运行认证。月光基础设施位于地月轨道,将利用欧洲导航和通信行业开发的先进技术,经过优化,即使在月球上也能提供可靠的连接和精确的定位。这些服务对于确保安全探索月球表面、从地球持续监测活动和改善任务的运行管理至关重要。月光计划旨在为欧洲航天局和其他空间机构的机构任务以及商业用户提供通信和导航服务,从而为建立稳固的月球经济做出贡献。此外,与最重要的国际空间机构共享的标准 LunaNet 的互操作性将确保各服务提供商之间的合作,提高整个系统的可靠性。月光基础设施将分为三个主要部分:月球空间段,包括提供通信、导航和时间同步服务的月球轨道卫星;月球地面段包括提供服务和管理运营活动所需的控制站和地面基础设施,月球用户段包括星座进入轨道后验证服务所需的终端。由于该系统基于 NASA、ESA 和 JAXA 定义的国际标准,它将根据标准支持月球导航和通信终端。初始配置包括一颗通信卫星和四颗导航卫星,旨在确保广泛覆盖月球南极,这是未来探索月球的关键区域
这是我第四次为 Aerogram 写欢迎信。这也意味着这是我第四次重点介绍航空航天学院的记录。作为我们作为顶级航空航天工程学术课程持续取得成功的标志,我们的 1,176 名本科生和 604 名研究生比我 1995 年在普渡大学担任助理教授时增加了六倍。我们的美国新闻与世界报道排名将我们列为本科课程和研究生课程的第 5 名。根据美国工程教育协会 (ASEE) 的统计,去年我们毕业的航空航天工程师拥有美国最多的学士学位。为了跟上我们似乎不断增长的招生人数并增强我们的研究能力,我们今年增加了两名新教员。Husheng Li 加入我们,担任自主和控制领域的教授。他拥有电气工程背景。Husheng 进行研究并将教授与航空航天通信和航空电子相关的课程(第 31 页)。Keith LeGrand 加入我们,担任天体动力学和空间应用领域的助理教授。Keith 致力于多目标跟踪以及其他进入和使用太空的重要问题,这与 AAE 领导的地月空间学院计划非常吻合(第 30 页)。AAE 的另一项记录是我们的研究支出。虽然这不能完美衡量我们的研究成果,但我仍然很高兴地报告,我们本财政年度(2021 年 7 月至 2022 年 6 月)的总收入接近 2200 万美元,远远超过去年的 1750 万美元。按支出计算,国防部、NASA 和我们的行业合作伙伴是我们最大的三个研究合作伙伴。我们有许多有价值的行业合作伙伴,在撰写这封信时,普渡大学刚刚与诺斯罗普·格鲁曼公司达成了一项主研究协议,这将使教师、学生和研究人员更容易与诺斯罗普·格鲁曼公司就感兴趣的话题进行互动。同样,普渡大学与劳斯莱斯续签的合作伙伴关系在 10 年内价值 7500 万美元。这将加强 AAE 与劳斯莱斯在燃气涡轮发动机实验能力方面的基础研究,并为新的合作领域提供机会。在我们行业合作伙伴关系的另一个方面,我们能够在今年秋天通过欢迎 Grazia 重新启动 William E. Boeing 杰出讲座
I. 引言随着火星立方体一号 (MarCO) 任务的成功和小型化技术的进步,小型卫星不再局限于在低地球轨道 (LEO) 运行。相反,通过低推力小型卫星进行深空探索、技术演示和有针对性的科学任务可能很快就会成为现实。事实上,即将到来的任务,如月球冰立方、LunaH-map 和 NEA Scout,将把小型卫星作为次要有效载荷搭载在 Artemis 1 上,部署到多体重力环境内的各种位置[1-3]。然而,混沌多体系统中航天器的轨迹和机动设计本质上是一个高维问题,而且由于结合了与低推力小型卫星相关的约束而变得更加复杂:有限的推进能力、运行调度约束以及固定但不确定的初始条件。虽然存在多种基于最优控制和动态系统理论 (DST) 的数值方法,用于在多体系统的近似动力学模型中构建低推力轨迹和机动剖面,但自主和稳健设计策略的开发需要一种替代方法。强化学习 (RL) 是天体动力学界越来越感兴趣的一类用于实现轨迹和机动设计的自主性的算法。RL 算法通常涉及代理与环境交互,通过对动态状态采取行动来最大化奖励函数。代理会探索环境,直到确定了决定每个状态下最佳动作的策略。如果制定得当,这些算法可以探索许多状态-动作对以确定最佳动作,同时限制对次优动作的探索。RL 方法已用于天体动力学中各种应用和动力学模型的轨迹和机动设计。例如,Dachwald 探索使用人工神经网络和进化算法设计配备低推力航天器到水星的转移 [ 4 ]。Das-Stuart、Howell 和 Folta 近期提出的方法利用 RL 和基本动力学结构来设计圆形限制三体问题 (CR3BP) 中周期轨道之间的复杂转移轨迹 [ 5 ]。此外,Scorsoglio、Furfaro、Linares 和 Massari 还使用演员-评论家深度强化学习 (DRL) 方法来开发地月空间近直线轨道航天器的对接机动 [ 6 ]。最近,Miller 和 Linares 应用著名的近端策略优化 (PPO) 算法来设计地月系统中遥远逆行轨道之间的转移,通过 CR3BP 进行建模 [ 7 ]。这些研究的成功为天体动力学界继续探索和扩展 RL 在多体轨迹设计策略中的应用奠定了宝贵的基础。具体来说,本文以这些先前的研究为基础,重点关注实施基于 RL 的轨迹设计方法的一个重要组成部分:制定一个奖励函数,该函数既反映了设计目标,也反映了影响恢复机动轮廓操作可行性的约束。该分析是在低推力 SmallSat 的轨迹设计背景下进行的,以快速访问位于与 CR3BP 中的周期轨道相关的稳定流形上的附近参考轨迹。