摘要:胎儿大脑在整个怀孕期间都会经历广泛的形态变化,这可以在超声采集中直观地看到。我们探索使用卷积神经网络 (CNN) 在 3D 超声图像中分割多个胎儿大脑结构。胎儿超声图像中大脑结构的准确自动分割可以跟踪整个妊娠期的大脑发育,并提供有用的信息,帮助预测胎儿的健康结果。我们提出了一种多任务 CNN,用于根据图谱生成的白质、丘脑、脑干和小脑标签自动进行分割。在 480 个体积上训练的网络在 48 个测试体积上产生了准确的 3D 分割,白质的 Dice 系数为 0.93,丘脑、脑干和小脑的分割超过 0.77。
卷积神经网络(CNN)是一种广泛使用的深度学习模型,对于图像识别和分类任务特别有效。CNN的性能不仅受其建筑的影响,而且受到其超参数的严重影响。因此,优化超参数对于改善CNN模型性能至关重要。在这项研究中,作者提出了利用优化算法,例如随机搜索,使用高斯工艺的贝叶斯优化以及使用树状结构化parzen估计器进行贝叶斯优化,以微调CNN模型的超标仪。将优化的CNN的性能与传统的机器学习模型进行了比较,包括随机森林(RF),支持向量分类(SVC)和K-Nearest Neighbors(KNN)。在这项研究中使用了MNIST和Olivetti Faces数据集。在MNIST数据集的训练过程中,CNN模型的最低准确度达到97.85%,超过了传统模型,在所有优化技术中,最大准确度为97.50%。同样,在Olivetti Faces数据集上,CNN的最低准确度为94.96%,而传统模型的最高准确度为94.00%。在训练测试程序中,CNN表现出令人印象深刻的结果,在MNIST数据集上达到了超过99.31%的准确率,而Olivetti Face face Dataset的准确率超过98.63%,其最大值分别为98.69%和97.50%。此外,该研究还将CNN模型的性能与三种优化算法进行了比较。结果表明,与传统模型相比,将CNN与这些优化技术集成可显着提高预测准确性。
摘要:脑–计算机接口(BCI)是一个基于计算机的系统,允许大脑与外部世界之间进行通信,从而使用户能够使用神经活动与计算机进行交互。该大脑信号是从脑电图(EEG)信号获得的。基于脑电图发展BCI的显着障碍是主题无关的运动图像数据的分类,因为脑电图数据非常个性化。深度学习技术(例如卷积神经网络(CNN))已经说明了它们对特征提取的影响,以提高分类精度。在本文中,我们提出了一个多分支(五个分支)的2D卷积神经网络,该网络为每个分支使用多个超参数。所提出的模型在三个公共数据集上实现了跨主题分类和优于EEGNET,ShandowConvnet,DeepConvnet,MMCNN和EEGNET_FUSION的有希望的结果。我们提出的模型EEGNET融合V2分别为EEGMMIDB数据集的实际和想象的运动活动达到89.6%和87.8%的精度,而BCI IV-2A和IV-2B数据集的实际运动活动分别为74.3%和84.1%。但是,该模型的计算成本更高,即,每个样本的计算时间比EEGNET_Fusion所需的计算时间大约高3.5倍。
大脑计算机界面是人类计算机交互的一种新方法,它提供了大脑与计算机或其他外部设备之间的直接通信联系(McFarland和Wolpaw,2011年)。事件相关电位(ERP)是代表皮质加工的独特相位的大脑表面的电活动的时间固定量度(Patel和Azzam,2005),它是与某人对某些刺激或特定事件的反应有关的内源性电位。ERP的典型示例是N200和P300。P300(Sutton等人,1967年)是一个正面峰值事件后约300毫秒显示的正峰波形,是ERP研究最多,使用最广泛,最突出的成分之一(David etal。,2020年; Kirasirova等。,2020)。P300分类检测是P300-BCI研究的重点,快速准确的识别对于改善p300-BCI的性能至关重要(Huang等人。,2022)。P300通常表现出低信噪比(SNR)(Zhang等人,2022)。为了突出其时间锁定的组件并最大程度地减少背景噪声,P300-BCI要求从多个试验中收集,汇总和平均数据以获得可靠的输出(Liu等人。,2018年),这是耗时且有效的。因此,在单审判中正确对p300进行分类是一个巨大的挑战。到目前为止,单个试验P300分类算法的准确性记录如下:Krusienski使用逐步线性判别分析(SWLDA)的平均分类精度约为35%。使用贝叶斯线性判别分析(BLDA)的平均分类准确性(BLDA)约为60%。Blankertz应用了收缩线性判别分析(SKLDA),并达到平均分类精度约为70%。张张通过时空判别分析(STDA),并达到平均分类准确性约为61%。Kaper开发的支持向量机(SVM)算法的平均分类精度达到64.56%。以及XIAO提出的判别规范模式匹配(DCPM)的价值为71.23%,表明DCPM在单验P300分类中的其他传统方法显着超过了其他较小的训练样本中的其他传统方法(Xu等人。,2018,2021; Xiao等。,2019a,b,2021; Wang等。,2020)。ma等。(2021)提出了一个基于胶囊网络的模型,该模型提高了单审P300的检测准确性,但是,由于大小的增加,计算变得复杂。Zhang等。 (2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。 这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人 ,2022)。 深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。 ,2020年),脑电图数据融合(Panwar等人Zhang等。(2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人,2022)。深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。,2020年),脑电图数据融合(Panwar等人如今,深度学习方法在基于脑电图的目标检测技术方面取得了巨大进展(Li等人,2021),基于此,一些学者提出了其他用于P300分类的方法,例如转移学习(Wei等人。,2020),incep a-eegnet(Xu等人,2022),组合分类器(Yu等人。,2021),主成分分析(PCA)(Li等人,2020)等目前,Daniela使用了CNN(Cecotti和
摘要:目标:脑电图(EEG)信号的时间和空间信息对于识别情绪分类模型中的特征至关重要,但它过分依赖于手动特征提取。变压器模型具有执行自动特征提取的能力;但是,在与情绪相关的脑电图信号的分类中尚未完全探索其潜力。为了应对这些挑战,本研究提出了一个基于脑电图和卷积神经网络(TCNN)的新型模型,用于EEG时空 - 静态(EEG ST)特征学习以自动情感分类的特征。方法:所提出的EEG ST-TCNN模型利用了编码(PE)的位置(PE),并注意EEG信号中感知的通道位置和定时信息。模型中的两个平行变压器编码器用于从与情绪相关的EEG信号中提取空间和时间特征,并且使用CNN来汇总脑电图的空间和时间特征,随后使用SoftMax对其进行分类。结果:拟议的EEG ST-TCNN模型在种子数据集上的准确度分别为96.67%,精度为95.73%,96.95%和96.34%的精度,唤醒,唤醒,唤醒和价尺寸的精度为96.34%。结论:结果证明了所提出的ST-TCNN模型的有效性,与最近的相关研究相比,情绪分类的表现出色。意义:拟议的EEG ST-TCNN模型有可能用于基于EEG的自动情绪识别。
回复:根据佛罗里达州法规§770.01,此信函正式通知美国有线电视新闻网公司(“CNN”)发表的多篇文章和电视节目中存在关于唐纳德·J·特朗普总统(“特朗普总统”)的虚假陈述,包括但不限于下文讨论的陈述。根据佛罗里达州法规§770.02,CNN 必须在发出本通知之日起十(10)天内,在上述文章、文字记录或广播出现的网站出版物的相同版本或对应期刊中,以与原始文章、文字记录或广播同样显眼的位置和类型,发布全面、公正的更正、道歉或撤回声明。如果未能发布此类更正、道歉或撤回声明,CNN 将对您提起诉讼并要求赔偿损失。
回复:根据佛罗里达州法规§770.01,此信函正式通知美国有线电视新闻网公司(“CNN”)发表的多篇文章和电视节目中存在关于唐纳德·J·特朗普总统(“特朗普总统”)的虚假陈述,包括但不限于下文讨论的陈述。根据佛罗里达州法规§770.02,CNN 必须在发出本通知之日起十(10)天内,在上述文章、文字记录或广播出现的网站出版物的相同版本或对应期刊中,以与原始文章、文字记录或广播同样显眼的位置和类型,发布全面、公正的更正、道歉或撤回声明。如果未能发布此类更正、道歉或撤回声明,CNN 将对您提起诉讼并要求赔偿损失。
影响人类生计的主要因素之一是天气事件。造成森林火灾,高空温度和全球变暖的高天气灾难,导致干旱。需要采取有效,准确的天气预报方法来针对气候灾难采取措施。因此,设计一种可以做出更好天气预测的方法很重要。这项工作提出了一个优化的深度学习模型,即1D卷积神经网络(CNN),其注意力门控复发单元(GRU)模型,可用于可靠的天气预测。也就是说,要捕获天气数据的局部特征,使用了1D CNN,并捕获天气数据的时间特征,使用了优化的GRU。注意机制用于改善性能,而GRU的超参数通过自适应野马算法(AWHA)进行了优化。这项工作考虑了具有14个参数的Jena气象数据库,并为不同的预测度量进行了比较分析。提出的天气预测模型达到了更好的均方误差(MSE)和均方根(RMSE)值。
运动图像(MI)脑电图(EEG)分类是脑机构界面(BCI)的重要组成部分,使具有流动性问题的人可以通过辅助设备与外界进行通信。但是,由于其复杂性,动态性质和低信噪比,EEG解码是一项艰巨的任务。设计一个充分提取EEG信号的高级特征的端到端框架仍然是一个挑战。在这项研究中,我们提出了一个平行的空间 - 暂时性自我注意力,用于四级MI EEG信号分类。这项研究是定义原始脑电图信号的新时空表示的第一个研究,该信号使用自我注意力的机制提取可区分的时空特征。特别是,我们使用空间自我注意模块来捕获MI EEG信号通道之间的空间依赖性。此模块通过通过加权求和在所有通道上汇总特征来更新每个通道,从而提高了分类准确性并消除由手动通道选择引起的伪像。此外,时间自我发项模块将全局时间信息编码为每个采样时间步骤的特征,因此可以在时域中提取MI EEG信号的高级时间特征。定量分析表明,我们的方法优于主体内和受试者间分类的最先进方法,证明其稳健性和有效性。最后,采用提出的方法根据脑电图信号实现对无人机的控制,从而验证其在实时应用中的可行性。在定性分析方面,我们对从学到的架构估算的新时空表示形式进行视觉检查。