目标。脑电图(MI)分类基础(EEG)长期以来一直在神经科学领域进行研究,最近在医疗保健应用中广泛使用了移动辅助机器人和神经疗法等医疗保健应用。尤其是依赖卷积神经网络(CNN)的基于脑电图的运动象征分类方法已经达到了相对较高的分类精度。然而,天真的训练CNN可以从所有通道中对原始脑电图进行分类,尤其是对于高密度的脑电图,在计算上是要求的,需要大量的训练集。它通常还引入了许多无关的输入功能,因此CNN很难提取信息丰富的功能。这个问题是由于缺乏训练数据而加剧了这一点,这对于MI任务尤其重要,因为这些问题是认知要求的,因此疲劳引起了疲劳。方法。为了解决这些问题,我们提出了一个基于端到端CNN的神经网络,具有注意机制以及不同的数据增强(DA)技术。我们在两个基准MI数据集,脑计算机界面(BCI)竞争IV 2A和2B上测试了它。此外,我们收集了一个使用高密度脑电图记录的新数据集,并包含与社区共享的MI和Motor Execution(ME)任务。主要结果。我们提出的神经网络架构的表现优于我们在文献中发现的所有最新方法,在有或没有DA的情况下,BCI 2A和2B的平均分类精度分别达到93.6%和87.83%。我们还直接比较了MI和我任务的解码。意义。专注于MI分类,我们找到了最佳的渠道配置和最佳DA技术,并研究了跨参与者的数据和转移学习的作用。我们提出的方法提高了基准数据集中MI的分类精度。此外,收集自己的数据集使我们能够比较MI和我,并研究EEG对神经科学和BCI至关重要的各个方面。
考虑到与该疾病相关的严重神经系统障碍和潜在的死亡,保留人类健康和生命在开发自动检测方法中至关重要。计算效率在实时决策,治疗计划和整体医疗保健系统优化中在脑肿瘤分类中起关键作用。虽然卷积神经网络(CNN)由于其出色的准确性而广泛用于脑肿瘤检测,但其高计算需求带来了重大挑战。为了应对当前的挑战,采用了混合模型,集成了预先训练的卷积神经网络(CNN)转移学习模型和分布式计算编程范式。主要目标涉及两个阶段:在第一阶段,InceptionV3和VGG19 CNN转移学习模型被部署在GPU上以检测脑恶性肿瘤。性能指标,包括准确性,精度,召回和F1得分,以及对CPU和GPU上计算时间的比较分析。结果表明,InpectionV3的精度率(约为98.83%)比VGG19(77.65%),在CPU和GPU平台上都具有较高的计算速度。GPU执行可将计算时间大幅减少90%,归因于InceptionV3的有效体系结构。在第二阶段,分别使用分布式计算过程进行实时分类,该计算过程分别具有先前训练的CNN模型,用于神经胶质瘤,脑膜瘤和垂体肿瘤。修订:2023年9月25日,接受:2024年4月19日这种综合方法为大规模脑肿瘤数据集的实时分类提供了有效的解决方案。
脑机接口(BCI)是一种通过分析脑电信号识别个体意图或状态,进而控制计算机或机器的技术,广泛应用于各个领域。然而,脑机接口的研究多集中在运动想象方面,而对主动运动的研究多集中在上肢运动方面,而对下肢运动的研究多集中在静态或单一动作方面。因此,本研究基于动态环境下的脑电信号开发了对步行行为(1:步行,2:上楼,3:下楼)进行分类的深度学习模型,以验证对动态状态下的脑电信号进行分类的可能性。我们开发了一种结合卷积神经网络(CNN)和双向长短期记忆(BiLSTM)的模型。该模型获得了82.01%的平均识别性能,其中步行的平均准确率为93.77%,上楼的平均准确率为76.52%,下楼的平均准确率为75.75%。预计未来可以设计出各种旨在帮助残疾人和老年人的机器人设备,它们具有多种功能,例如人机交互、物体操纵和利用 BCI 进行控制的路径规划。
太空飞行相关神经眼综合征 (SANS) 是太空飞行最大的生理障碍之一,需要对未来的行星任务进行评估和缓解。由于太空飞行环境是临床受限的环境,本研究的目的是使用在宇航员 SANS 光学相干断层扫描 (OCT) 图像上训练和验证的机器学习模型提供 SANS 的自动早期检测和预测。在本研究中,我们提出了一个轻量级卷积神经网络 (CNN),它结合了 EffficientNet 编码器,用于从 OCT 图像中检测 SANS,名为“SANS-CNN”。我们使用 6303 张 OCTB 扫描图像进行训练/验证(80%/20% 分割),并使用 945 张 SANS 图像进行测试,结合地面图像和宇航员 SANS 图像进行测试和验证。使用 NASA 标记的 SANS 图像对 SANS-CNN 进行了验证,以评估准确度、特异性和敏感性。为了评估真实世界的结果,还在这个数据集上采用了两种最先进的预训练架构。我们使用 GRAD-CAM 来可视化中间层的激活图,以测试 SANS-CNN 预测的可解释性。SANS-CNN 在测试集上的准确度为 84.2%,特异性为 85.6%,敏感性为 82.8%,F1 分数为 84.1%。此外,SANS-CNN 的准确度分别比另外两种最先进的预训练架构 ResNet50-v2 和 MobileNet-v2 高出 21.4% 和 13.1%。我们还应用两种类激活图技术来可视化模型感知到的关键 SANS 特征。 SANS-CNN 代表一种使用真实宇航员 OCT 图像进行训练和验证的 CNN 模型,能够快速有效地预测在临床和计算资源极其有限的地球轨道以外的太空飞行任务中出现的类似 SANS 的情况。
目的:卷积神经网络(CNN)最近在解码脑脑成像(MI)脑部计算机界面(BCI)的脑电图(EEG)信号方面引起了很多注意,该信号设计用于改善中风康复策略。然而,脑电图信号的极其非线性,非平稳性质和各个受试者之间的多样性导致CNN模型过度拟合并限制其学习能力。在这项研究中,提出了具有多视图输入的密集连接的卷积网络。方法:首先,通过应用于脑电图信号的带通滤波器的CNN模型输入,从原始EEG信号中产生了不同的数据子集,以基于脑节律生成多个频率子频段信号。然后,分别基于整个频段和滤波器频段信号捕获时间和空间特征。此外,使用多CNN层的两个密集块,它们将每一层连接到馈送路径中的其他层,用于增强模型学习能力并增强信息传播。最后,使用一种串联融合方法来整合提取的特征和完全连接的层来最终化分类。结果:所提出的方法在韩国公立大学EEG数据集上达到了75.16%的平均准确性,该数据集由54个健康受试者组成,用于两级运动成像任务,高于其他最先进的深度学习方法。结论:提出的方法有效地从BCI系统中的EEG信号中提取了更丰富的运动图像信息,并提高了分类精度。
在这些指示的指导下的位置。但是,有效地融合视觉和语言方式之间的信息仍然是一个重大挑战。为了实现自然语言和视觉信息的深入整合,本研究引入了多模式融合神经网络模型,该模型将视觉信息(RGB图像和深度图)与语言信息(自然语言导航指令)结合在一起。首先,我们使用更快的R-CNN和RESNET50来提取图像特征和注意机制,以进一步提取有效的信息。其次,GRU模型用于提取语言功能。最后,另一个GRU模型用于融合视觉语言功能,然后保留历史信息以将下一个动作指令提供给机器人。实验结果表明,所提出的方法有效地解决了机器人真空吸尘器的本地化和决策挑战。关键字:机器人真空吸尘器;视觉语言导航;多模式融合; Resnet50; gru;
摘要 - 这项工作是从Phonocartiogram(PCG)录音中自动且准确的心脏模拟检测。Two public PCG datasets (CirCor Digiscope 2022 dataset and PCG 2016 dataset) from Physionet online database are utilized to train and test three custom neural networks (NN): a 1D convolutional neural network (CNN), a long short-term memory (LSTM) recurrent neural network (RNN), and a convolutional RNN (C- RNN).我们首先进行预处理,其中包括以下关键步骤:使用小波散射变换对PCG段的DeNoising,分割,仅噪声段重新标记,数据归一化以及PCG段的时间频率分析。然后,我们使用PCG 2022数据集进行了四个实验,前三个(E1-E3),使用PCG 2016数据集进行了第四个实验。事实证明,我们的自定义1D-CNN优于其他两个NN(LSTMRNN和C-RNN)。此外,对于实验E3,我们的1D-CNN模型就准确性,加权准确性,F1得分和AUROC而优于相关工作(使用清洁和重新标记的PCG 2022数据集)。对于实验E1(使用原始PCG 2022数据集),我们的模型在加权准确性和F1分数方面非常接近相关工作。
脑机接口 (BCI) 技术通过解释脑电活动实现了人与计算机或其他外部设备之间的直接通信 (Cecotti and Graser, 2010; Manor and Geva, 2015)。BCI 技术在各个领域有着广泛的应用,例如运动方向识别 (Zhang et al., 2022a)、情绪识别 (Chen et al., 2019; Joshi and Ghongade, 2021; Tao et al., 2023) 和癫痫发作检测 (Xu et al., 2020; Dissanayake et al., 2021; Jana and Mukherjee, 2021; Wang B. et al., 2023)。同时,研究人员正在积极研究脑电图 (EEG) 在目标识别领域的潜在应用 (Lan et al., 2021)。在复杂环境中,计算机视觉容易受到环境干扰,
摘要 - 基于CPU的推理可以作为外芯片加速器的拟合作用。在这种情况下,由于其高效率,新兴的矢量体系结构是一个有前途的选择。然而,卷积算法和硬件实现的庞大设计空间使设计选项的选择具有挑战性。在本文中,我们介绍了针对基于CPU的卷积神经网络(CNN)推断的共同设计的未来矢量体系结构的持续研究,重点是IM2Col+Gemm和Winograd内核。使用GEM5模拟器,我们探讨了几个硬件微体系特征的影响,包括(i)向量泳道,(ii)向量长度,(iii)缓存尺寸和(iv)将向量单元集成到CPU管道中的选项。In the context of im2col+GEMM, we study the impact of several BLIS-like algorithmic optimizations such as (1) utilization of vector registers, (2) loop unrolling, (3) loop reorder, (4) manual vectorization, (5) prefetching, and (6) packing of matrices, on the RISC-V Vector Extension and ARM-SVE ISAs.我们使用Yolov3和VGG16网络模型进行评估。我们的共同设计研究表明,BLIS样的优化对所有类型的矢量微体系结构都不是有益的。我们还证明,与我们优化的CNN内核相比,较长的矢量长度(至少为8192位)和较大的缓存(256MB)可以提高5倍的性能,而512位和1MB的载体长度则可以提高性能。我们的共同设计研究还表明,与IM2Col+GEMM相比,Winograd需要较小的缓存尺寸(高达64MB)。在Winograd的背景下,我们通过使用每个通道的8×8图块来介绍跨输入/输出通道之间的新颖的瓷砖并行方法,以对向量长度不可知(VLA)体系结构进行载体化算法。我们的方法利用了较长的向量长度并提供了高内存重复使用,与我们在Fujitsu A64FX处理器上优化的IM2Col+Gemm方法相比,对于具有3×3内核大小的非弯曲卷积层的性能提高了2.4倍。索引术语 - CNN,GEMM,Winograd,长量架构,向量长度不可知论ISA,共同设计,优化
摘要。可再生能源目前正经历着有希望的增长,成为减少化石燃料使用产生的污染气体(导致全球变暖)的替代解决方案。为了将这些可再生能源安全地整合到电网系统中,并使电网系统更加稳定,准确预测特定风力发电场的风力发电量和发电时间至关重要。深度学习方法已显示出对复杂和非线性问题(例如时间序列风力发电数据)的良好预测性能。然而,需要进一步研究通过将多个模型与超参数优化相结合来优化深度学习模型,以使这些单个模型获得最佳性能。在本文中,我们提出了一种用于埃塞俄比亚风力发电预测的混合 CNN-LSTM 模型。在构建混合 CNN-LSTM 模型之前,应用贝叶斯优化来调整单个学习器的超参数,包括 1D-CNN 和 LSTM 模型。在从埃塞俄比亚电力公司获得的三个案例研究风力发电数据集上对所提出的模型进行了测试。根据 MAE、RMSE 和 MAPE 评估指标,对于所有案例研究数据,混合模型的表现明显优于基准模型,包括 ANN、RNN、BiLSTM、CNN 和 LSTM 模型。
