深度学习的快速发展为改善医学图像分析创造了新的机会,尤其是在识别胸部CT和X射线扫描异常时。这项工作调查了旨在提高医疗环境诊断效率和准确性的几种深度学习技术。我们探讨了3D CNN,转移学习和卷积神经网络或CNN的使用,以分析体积CT扫描信息以及2D胸部X射线图片。比较分析表明,各种深度学习架构的益处和缺点,用于识别各种异常,包括肿瘤,肺部,肺炎和其他疾病。我们还介绍了预处理方法的重要性,专门为医学图片分析而设计的评估指标和数据集准备。结果强调了深度学习有可能通过促进对异常的更快,更准确的识别来彻底改变胸部成像诊断的可能性,这将增强患者的结果和医疗保健提供的有效性。在对胸部问题,未来的研究主题和该领域的障碍的深度学习分析中刺激了其他发展。
机器学习的方法被称为深度学习 (DL),包括人工神经网络 (ANN) 和卷积神经网络 (CNN)。以下流程图(图 2 和图 3)解释了人工智能中每个组件的作用。机器学习 (ML) 方法可分为三种学习类型:监督学习、无监督学习和强化学习。第一种类型用于分类或预测任务,而第二种类型则有助于识别数据中隐藏的模式。强化学习基于先前的学习版本来最大化奖励。深度学习 (DL) 利用算法,利用 CNN 自动从输入数据中提取相关信息,从而无需手动识别和提取特征。DL 在医学疾病诊断和个性化治疗建议方面已显示出良好的前景。例如,在正畸领域,基于人工智能的多模块诊断系统已经出现,例如 Diagnocat Ltd.,它使用 CNN 进行精确的牙科诊断。深度学习模型可通过检测 CBCT 图像中的根尖病变来帮助检测龋齿和牙髓病,从而有助于临床工作流程。2
我与CNN合作,利用转移学习并应用微调以提高检索的最终准确性。我的焦点开了大规模检索,试图减少检索时间,但要保持较高的检索性能。我提出了一种基于LSH预测的新索引方法,称为索引袋(BOI)。我也对图像检索目的的注意力/显着性方法感兴趣。
卷积神经网络 (CNN) 可以自动从原始数据中学习特征以近似函数,这种网络越来越多地应用于脑电图 (EEG) 信号的端到端分析,尤其是用于解码脑机接口 (BCI) 中的大脑状态。尽管如此,CNN 引入了大量可训练参数,可能需要较长的训练时间,并且缺乏学习到的特征的可解释性。本研究的目的是提出一种用于 P300 解码的 CNN 设计,重点在于其在保证高性能的同时的轻量级设计、不同训练策略的影响以及使用事后技术来解释网络决策。所提出的设计名为 MS-EEGNet,以高效和优化(就可训练参数而言)的方式学习了两个不同时间尺度(即多尺度,MS)中的时间特征,并在三个 P300 数据集上进行了验证。使用不同的策略(参与者内和会话内、参与者内和跨会话、留一法、迁移学习)训练 CNN,并与几种最先进的 (SOA) 算法进行了比较。此外,分析了基线 MS-EEGNet 的变体,以评估不同超参数对性能的影响。最后,使用显着图来推导驱动 CNN 决策的相关时空特征的表示。尽管 MS-EEGNet 具有多个时间尺度,但它与测试的 SOA CNN 相比是最轻的 CNN,并且明显优于 SOA 算法。事后超参数分析证实了 MS-EEGNet 创新方面的优势。此外,MS-EEGNet 确实受益于迁移学习,尤其是使用少量训练示例,这表明所提出的方法可用于 BCI 中以准确解码 P300 事件,同时减少校准时间。从显著性图得出的表示与 P300 时空分布相匹配,进一步验证了所提出的解码方法。本研究通过专门解决轻量级设计、迁移学习和可解释性方面的问题,有助于推动基于 P300 的 BCI 深度学习算法的开发。
致命的脑肿瘤“胶质母细胞瘤”具有随着时间的推移而生长的倾向。为了改善患者的预后,必须准确,及时对GBM进行分类,以提供集中和个性化的治疗计划。尽管如此,由于最近的技术分解,深度学习方法,尤其是卷积神经网(CNN)(CNN)在无数的医学图像分析应用中表现出很高的准确性。该研究的总体目的是研究如何使用医学成像中的数据使用CNN来对GBM进行分类,以提高预后的精度和有效性。这项研究将展示一种使用CNN架构的精心设计方法,并使用该肿瘤的MRI图片数据库进行了训练。将根据其整体性能评估构造的模型。还将进行常规机器学习技术和现有分类方法的广泛实验和核心。强调临床工作流程中早期和准确预测的可能性至关重要,因为它可能会对治疗计划和患者结果产生重大影响。副目标不仅要应对分类挑战,还要概述提高预后精度和治疗效率的明确途径。关键字
10 处理视觉信息的大脑神经网络具有与人工智能中常用于视觉处理的神经网络(例如卷积神经网络 (CNN))的结构特性截然不同的结构特性。但这些结构差异与网络功能之间的关系仍不得而知。我们分析了 V1 区大规模模型的视觉处理能力,该模型可以说是目前最全面的解剖和神经生理数据积累。事实证明,其网络结构可以诱导大脑的许多典型视觉处理能力,特别是能够多路复用不同的视觉处理任务,也可以处理时间分散的视觉信息,并且对噪声具有显著的鲁棒性。该 V1 模型还表现出大脑的许多典型神经编码特性,这解释了其出色的噪声鲁棒性。由于大脑中的视觉处理比常见计算机硬件中 CNN 的实现更加节能,这种类似大脑的神经网络模型也可能对技术产生影响:作为更节能的神经形态硬件中视觉处理的蓝图。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
机器学习,特别是通过卷积神经网络(CNN)和增强学习(RL)显着增强了机器人感知和决策能力。本研究探讨了CNN的整合以提高对象识别精度,并通过综合多个感官输入来解释传感器融合来解释复杂的环境。更重要的是,RL可用于完善机器人实时决策过程,从而减少任务完成时间并提高决策准确性。尽管有潜力,但这些高级方法需要广泛的数据集和大量的计算资源才能有效实时应用程序。该研究旨在优化这些机器学习模型,以提高效率并解决自主系统中涉及的道德考虑因素。结果表明,机器学习可以大大提高各个领域的机器人功能,包括自动驾驶汽车和工业自动化,从而支持可持续的工业增长。这与联合国的可持续发展目标相吻合,特别是SDG 9(行业,创新和基础设施)和SDG 8(体面的工作和经济增长),通过促进技术创新并增强工业安全。结论表明,未来的研究应着重于提高这些技术在机器人技术中的可扩展性和道德应用,从而确保广泛,可持续的影响。
抽象 - 犯罪预测和分析在增强公共安全和优化执法工作中起着至关重要的作用。这项研究探讨了基于深度学习的方法,整合复发性神经网络(RNN),卷积神经网络(CNN)和长期短期记忆(LSTM)网络,以进行有效的犯罪预测和分析。所提出的框架利用了RNN和LSTMS的时间优势以及CNN的空间特征提取能力来分析大规模犯罪数据集。rnns和LSTMS处理时间序列数据以预测未来的犯罪趋势,而CNNS进行地理空间分析以识别各个地区的犯罪分布模式。混合模型处理结构化数据(例如,日期,时间,位置)和非结构化数据(例如犯罪描述),以提高预测精度。实验结果证明了其检测犯罪热点,预测犯罪类别并发现隐藏趋势的能力,为执法和决策者提供了可行的见解。这项研究强调了深度学习在应对复杂,动态挑战(例如犯罪预测)中的潜力,促进了更智能和更安全的城市。未来的工作可以纳入实时数据流,并评估在决策系统中部署此类模型的道德考虑
人工智能 (AI) 和深度学习子领域的应用已迅速进入医疗领域。特别是使用卷积神经网络 (CNN) 进行图像分析已被证明具有提高从业人员的可靠性和准确性的潜力。CNN 通过反复消化图像和图像标签对(例如,“此图像包含某种病理”)来学习图像中固有的统计模式,这些标签通常由医学专家提供,并最终能够评估未见过的数据 (LeCun 等人,2015)。对于检测龋齿病变,我们在诊断准确性研究 (Cantu 等人,2020) 中发现 CNN 的诊断准确度优于单个牙医,并在随机对照试验 (Mertens 等人,2021) 中证实了这一点。检测龋齿病变等病理本身不会给患者或医疗保健系统带来任何有形价值。相反,健康益处(和进一步的成本)来自后续(正确或错误分配的)治疗。对于射线照片上的龋齿检测,在建模研究中发现 CNN 具有成本效益,其中使用马尔可夫模型跟踪患者一生中检测到的(或未检测到的)和治疗的(或未治疗的)病变(Schwendicke