Loading...
机构名称:
¥ 1.0

机器学习的方法被称为深度学习 (DL),包括人工神经网络 (ANN) 和卷积神经网络 (CNN)。以下流程图(图 2 和图 3)解释了人工智能中每个组件的作用。机器学习 (ML) 方法可分为三种学习类型:监督学习、无监督学习和强化学习。第一种类型用于分类或预测任务,而第二种类型则有助于识别数据中隐藏的模式。强化学习基于先前的学习版本来最大化奖励。深度学习 (DL) 利用算法,利用 CNN 自动从输入数据中提取相关信息,从而无需手动识别和提取特征。DL 在医学疾病诊断和个性化治疗建议方面已显示出良好的前景。例如,在正畸领域,基于人工智能的多模块诊断系统已经出现,例如 Diagnocat Ltd.,它使用 CNN 进行精确的牙科诊断。深度学习模型可通过检测 CBCT 图像中的根尖病变来帮助检测龋齿和牙髓病,从而有助于临床工作流程。2

人工智能在临床实践中的作用

人工智能在临床实践中的作用PDF文件第1页

人工智能在临床实践中的作用PDF文件第2页

人工智能在临床实践中的作用PDF文件第3页

人工智能在临床实践中的作用PDF文件第4页

人工智能在临床实践中的作用PDF文件第5页

相关文件推荐

2020 年
¥4.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2014 年
¥10.0
2024 年
¥2.0