摘要简介DNA甲基化(DNAME)在一般人群中与2型糖尿病和血红蛋白A1C(HBA1C)的横截面相关。但是,目前在1型糖尿病中的纵向数据和数据非常有限。因此,我们在观察性1型糖尿病队列中进行了一项表观基因组范围的关联研究(EWA),以识别与与并发和未来的HBA1CS以及其他临床风险因素相关的DNAME的基因座,并在28年内。在683 597 CPG中的研究设计和方法在匹兹堡的糖尿病并发症的流行病学研究(<17年)1型糖尿病(n = 411)中分析了683 597 CpGs的全血液DNAME。使用针对糖尿病持续时间,性别,吸烟的包装,估计的细胞类型组成变量和技术/批处理协变量调整的线性模型以及技术/批处理协变量,对dname beta值和并发HBA1C进行了ewas。使用混合模型进行了随后重复的HBA1C测量的纵向EWA。我们进一步鉴定出对重要CPG的甲基化定量性状基因座(MEQTL),并进行了孟德尔随机化。CG19693031(CHR 1,硫氧还蛋白相互作用蛋白(TXNIP))和CG21534330(ChR 17,酪蛋白激酶1同工型Delta)的结果均与同时相关HBA1C显着相关。在纵向分析中,CG19693031的低甲基化在28年内与HBA1C持续更高的HBA1C相关,并且甘油三酸酯,脉搏率和白蛋白:肌酐比率(ACR)与HBA1C无关。我们在SLC2A1/SLC2A1-AS1中进一步确定了34个MEQTL,与CG19693031 DNAME显着相关。结论我们的结果扩展了先前的发现,即通过证明长期持续的关联持续存在,TXNIP低甲基化与1型糖尿病中的血糖控制有关。此外,与甘油三酸酯,脉搏率和ACR的关联表明TXNIP DNAME可以在血管损伤中发挥作用,而与HBA1C无关。这些发现通过其在SLC2A1 /葡萄糖转运蛋白1介导的葡萄糖调节中的作用来增强针对TXNIP的干预措施,以改善1型糖尿病的血糖控制。
摘要:金属铅(PB)等环境污染物与心血管疾病有关,但潜在的分子机制知之甚少。特别是,关于早期发育过程中对PB的暴露如何影响整个生命过程中的任何时刻以及性别之间的潜在差异,对PB的暴露量鲜为人知。在人类相关围产期暴露的小鼠模型中,我们利用RNA-SEQ并增强了降低的表示量测序(ERRB),以研究雌性和雌性小鼠在断奶中的心脏中分别研究妊娠和哺乳期PB暴露对基因表达和DNA甲基化的影响。对于错误,我们根据甲基化的最小绝对变化为10%和FDR <0.05,鉴定了差异化甲基化的CpG(DMC)或差异甲基化的1000 bp区域(DMR)。对于基因表达数据,FDR <0.05被认为是显着的。没有个体基因符合基因表达的FDR截止;但是,我们发现PB暴露会导致与心血管发育和疾病相关的基因途径表达的显着变化。我们进一步发现,PB促进了数百个基因基因座DNA甲基化的性别变化(男性中的280个DMC和99个DMR,女性中的189个DMC和121个DMR),途径分析表明,这些CPG和区域在胚胎发展中综合起作用。在男性中,与免疫功能和代谢有关的基因也发生了差异甲基化。 然后,我们研究了在断奶时表现出差异甲基化的基因是否也从成年后的一群PB暴露小鼠的心脏中差异化。在男性中,与免疫功能和代谢有关的基因也发生了差异甲基化。然后,我们研究了在断奶时表现出差异甲基化的基因是否也从成年后的一群PB暴露小鼠的心脏中差异化。我们发现一个单个基因Galnt2在性别和时间点都显示出差异甲基化。在人类队列中,研究了产前PB对表观基因组的影响,我们还观察到在GALNT2的一个基因座上的第一个三个月PB浓度与青少年血白细胞DNA甲基化之间存在反相关性,这表明该基因可能代表跨物种PB曝光的生物标志物。,这些数据在小鼠和人类出生队列研究中的两个时间点共同证明,PB暴露促进了心脏表观基因组的性别特异性编程,并为PB引起心血管疾病的方式提供了潜在的机械洞察力。
大麻在全球范围内广泛使用,但其与健康结果的联系尚未完全了解。DNA甲基化可以作为将环境暴露与健康结果联系起来的介体。我们在荟萃分析中进行了一项对周围性基因组的关联研究(EWA)(EWAS),其中包括9436名参与者(7795名欧洲和1641名非洲祖先),对七个同类的荟萃分析进行了基于外周的DNA甲基化和终生使用大麻的使用(vs.从未)。考虑了吸烟的影响,我们的跨性ewas荟萃分析显示,以0.05 p <5:85 ´107Þ的虚假发现率,与终身大麻的使用显着相关的CPG站点显着相关ACTN1和CG01101459在Linc01132附近。此外,我们在从未抽烟的参与者中进行的EWA分析,这些香烟识别出另一个遍及均质的CPG位点,CG14237301注释给APOBR。,我们使用了一项淘汰方法来评估构成的甲基化评分,该评分是构建的,是CPGS的加权总和。最佳模型可以解释使用寿命大麻的3.79%。这些发现揭示了与寿命使用大麻相关的DNA甲基化变化,这些变化与吸烟无关,并且可以作为进一步研究大麻暴露会影响健康结果的机制的起点。
不利的早期生活经历(ELA)会影响世界上大多数孩子的孩子。尽管建立了ELA对认知和情感健康的持久影响,但没有工具可以预测单个孩子中Ela conse问题的脆弱性。表观遗传标记在内,包括外周细胞DNA-甲基化谱可能会编码ELA并提供预测性结果标记,但人类基因组的个体差异和儿童期在儿童期的DNA甲基化的快速变化构成了重大挑战。希望减轻这些挑战,我们研究了几个ELA维度与DNA甲基化变化和结果的关系,并使用受试者内部纵向设计和高甲基化变化阈值的关系。在110名婴儿中,在收集两次(新生儿和12个月)收集的颊拭子/唾液样品中分析了DNA甲基化。我们确定了每个孩子在时间上差异化甲基甲基的CPG,并确定他们是否与5岁的ELA指标和执行功能相关联。我们根据最有助于甲基化变化的地点评估了性别差异,并得出了性别依赖性的“影响评分”。单个儿童的两个样本之间的甲基化变化反映了与年龄相关的趋势,并与几年后的执行功能相关。在经过测试的ELA维度和生命因素中,包括收入与需求比率,孕产妇敏感性,体重指数和婴儿性别,父母的不可预测性和家用信号是执行功能的最强预测指标。在女孩中,高早期生命的不可预测性与甲基化变化对预设执行功能相互作用。因此,纵向,受试者内部甲基化谱的变化可能会提供ELA的特征和个体结果的潜在预测标记。
背景:识别与冠心病 (CHD) 相关的 DNA 甲基化环境反应基因位点可能揭示 CHD 的新途径或治疗靶点。我们对亚洲人群中与发病 CHD 相关的 DNA 甲基化进行了首次前瞻性表观基因组范围分析。方法:我们进行了一项嵌套病例对照研究,包括发病 CHD 病例和从中国嘉道理生物库的 10 年随访中确定的 1:1 匹配对照。通过 Infinium Methylation EPIC BeadChip 测量基线血液白细胞 DNA 的甲基化水平。我们进行了单胞嘧啶-磷酸-鸟嘌呤 (CpG) 位点关联分析和网络方法来识别与 CHD 相关的 CpG 位点和共甲基化基因模块。结果:经过质量控制,保留了 982 名参与者(平均年龄 50.1 岁)。基因组中 25 个 CpG 位点的甲基化水平与 CHD 发病率相关(全基因组错误发现率 [FDR] < 0.05 或模块特定 FDR < 0.01)。已识别 CpG 的甲基化水平每增加一个标准差,CHD 风险就会有所不同,从降低 47% 到增加 118% 不等。中介分析显示,与吸烟相关的 CHD 风险增加的 28.5% 是由 ANKS1A 基因启动子区域的甲基化水平介导的(中介效应的 P = 0.036)。SNX30 启动子区域的甲基化水平与血压和随后的 CHD 风险相关,中介比例为 7.7%(P = 0.003),通过
种系病原变异在编码赖氨酸特异性组蛋白甲基转移酶基因setD1a和setD2的两个基因中与神经发育障碍(NDDS)相关,这些神经发育障碍(NDDS)具有发育延迟和先天异常的特征。setD1a和setD2基因产物在染色质介导的基因表达调节中起关键作用。已经检测到一系列染色质基因相关NDD的特异性甲基化发作,并通过改善变异致病性的解释来影响临床实践。为了研究SETD1A和/或SETD2相关的NDD是否与可检测的发作相关,我们使用基于下一代测序的测定法进行了> 2 M CpG的靶向全基因组甲基化分析。比较setD1a变异患者(n = 6)患者甲基化谱的比较没有揭示出强烈的甲基化发作的证据。对SETD2患者组的临床和遗传特征的综述表明,如前所述,截断突变的患者(n = 4,卢斯坎·卢姆综合症; MIM:616831)和具有MISSense CODON 1740的coDON 1740变体[P.Arg1740trp(n = 4 = 4)和P.Argn和P.Argn = 2 grn = arg n = arg n = arg n = arg n = arg n = arg n = arg n = arg 1 grn = 2 grn = rgn = rgn = rgn = rgn = 2 gln = rgn = rgn = rgn = rg1,两个SETD2亚组都表现出甲基化发作,该发作分别以甲基化和高甲基化事件为特征。在密码子1740亚组中,甲基化变化和临床表型在患有P.ARG1740TRP变体的人群中都更为严重。我们还注意到,具有SETD2 -NDD的10例病例中有2例发生了肿瘤。这些发现揭示了SetD2-NDDS中新型的表观遗传型 - 基因型 - 表型相关性,并预测了SETD2密码子1740致病变体的功能获取机制。
作为一种吞咽困难管理策略,有意对口咽部进行感官刺激正受到越来越多的关注(Mulheren 等人,2022 年;Peña-Chávez 等人,2023 年;Regan,2020 年)。有意提供显著和增强的感官刺激来对抗吞咽困难的理论源于对吞咽神经生理学的理解。吞咽是一种复杂的、中枢模式发生器 (CPG) 介导的感觉运动行为(Jean,2001 年)。通常,CPG 是专用的神经回路,可产生模式化的运动动作序列并受感官输入的调节(Barlow 和 Estep,2006 年)。人类吞咽 CPG 位于延髓,包括感觉核(孤束核 [NTS])和运动核(疑核 [NA]),它们与参与吞咽的脑神经核(如舌咽神经和迷走神经)紧密相连(Jean and Dallaporta,2006)。吞咽神经网络超出了脑干的 CPG,因为神经影像学研究报告称,许多皮质、皮质下和小脑结构在吞咽任务期间也处于活跃状态(Malandraki 等人,2009 年;Suzuki 等人,2003 年)。一次吞咽丸可以提供多种感觉输入模式,包括但不限于体感/压力、热、味觉、化学感觉、嗅觉、听觉和视觉刺激;目前尚不清楚吞咽神经网络如何优先考虑这些模式,但对其中任何一种模式的改变都可能改变吞咽机制 (Dietsch 等人,2017;Steele 和 Miller,2010)。刺激吞咽突出神经通路的感觉体验可能会对吞咽输出产生有利的前馈效应,例如更强或更及时的吞咽反应 (Ding 等人,2003)。
DNA甲基化是最丰富,最广泛研究的表观遗传修饰之一,在各种生物学过程中起着至关重要的作用,例如发育,癌症,衰老和复杂疾病。在癌症基因组图集(TCGA)等大型队列研究中,Illumina阵列已被广泛用作高通量筛查的经典平台。但是,这种类型的阵列覆盖了人类基因组中的CpG位点的3%。最新一代的DNA测序技术以PACBIO HIFI系统为例,具有产生长序列读数的独特能力,最高为25千碱基。太平洋生物科学(PACBIO)的最新进步致力于提高每碱基准确性和检测DNA修饰的能力。在这项研究中,我们使用DNA甲基化标准评估了PACBIO HIFI测序的性能。由人DNA在CpG部位酶甲基化的DNA标准和未甲基化的人DNA源自HCT116 DKO细胞系。1 ug。样品被测序为约8倍覆盖范围。DNA甲基化数据,并使用PB-CPG-Tools从BAM文件中提取甲基化值。然后,我们比较了从PACBIO HIFI测序获得的结果与由史诗阵列和整个基因组亚硫酸盐测序(WGB)产生的结果。我们发现WGB和PACBIO HIFI天然DNA甲基化调用表现出很高的一致性,表现优于史诗般的阵列,这两种史诗阵列都与甲基化标准和报道的CPG数量一致。使用甲基化的标准样品,HIFI数据报告约有85%的CpG位点的甲基化比大于90%,平均基因组宽93%。同样,WGBS数据显示了约85%的CpG位点的甲基化比大于90%,平均基因组宽95%。相比之下,Epic阵列仅报告40%的CpG位点的甲基化比大于90%,而整个基因组中平均为87%。这些结果表明,HIFI长读取测序可以准确检测到接近100%甲基化的区域的DNA甲基化信号。我们的研究提供了对检测DNA甲基化模式的PACBIO HIFI测序表现的见解及其作为史诗阵列的替代方案的潜力。这项研究的发现说明了如何将DNA甲基化标准用作评估DNA甲基化调用模型的基础真实参考。
ssouth@uoregon.edu 披露:Sanique South (N)、Yan Carlos Pacheco (N)、Levi Wood (N)、Nicholas Hannebut (N)、Cindy Brawner (N)、Matlock Jeffries (N)、Nick Willett (N) 简介:全球有数百万人患有创伤后骨关节炎 (PTOA),它是美国导致残疾的主要原因之一。此外,目前尚无已知的治愈方法或疾病改良疗法来阻止 PTOA 进展。细胞疗法在临床前研究中通常显示出巨大的潜力;然而,临床试验显示结果差异很大。这种差异被认为部分来自供体之间细胞效力的高度异质性以及宿主环境的多变性。了解供体人类间充质细胞 (hMSCs) 的可靠性和效力是确保 PTOA 获得一致和优化的治疗结果的关键步骤。 DNA 甲基化和去甲基化在调节 MSC 再生和免疫调节中发挥作用。然而,甲基化在 MSC 调节中的确切作用,以及基线表观遗传模式是否有助于预测关键治疗特性尚不完全清楚。为了弥补这些知识空白,本研究旨在基于基线表观遗传特征和结构结果建立供体 hMSC 治疗效力的预测模型,以研究可修改的细胞靶点,确保细胞治疗获得更好且一致的治疗结果。我们假设,与预测的治疗效果较差的 hMSC 相比,预测的治疗性 hMSC 将表现出独特的表观遗传特征。方法:体外研究:从 RoosterBio 和 Lonza 购买骨髓衍生的 hMSC。将来自 12 位供体的 hMSC 培养 24 小时(RoosterNourish TM -MSC 培养基,RoosterBio;MSCGM™ 间充质干细胞生长培养基,Lonza)。收获细胞并使用 Qiagen DNEasy 试剂盒提取 DNA。DNA 经过亚硫酸盐转化(每个样本 500ng,Zymo EZ DNA 甲基化试剂盒),然后加载到 Illumina Infinium HumanMethylation EPIC 阵列上,该阵列可以量化整个基因组中的 >850,000 个 CpG 位点,包括外显子、内含子和基因间区域。使用 R(v. 4.4.0)进行统计分析。使用 ChAMP 包(v.3.14)加载和处理原始 .IDAT 文件。首先加载原始阵列数据,并将 CpG 位点甲基化数据转换为 beta 值(0-1 甲基化值估计值表示给定 CpG 位点甲基化与未甲基化探针强度之比)。然后使用默认选项的 champ.norm 函数使用 beta 混合分位数归一化程序对 beta 值进行归一化。排除以下情况:(1)检测 P ≥0.01 的探针、针对非 CpG 位点的探针、位于性染色体上的探针,以及在CpG 探针 3' 端 5bp 范围内具有已知单核苷酸多态性的探针,其次要等位基因频率≥1% [1] (N=158,841)。对于模型开发,使用具有自动特征选择的 glmnet 包 (v. 2.0-16) 开发了弹性网络正则化广义逻辑模型。通过 3 倍内部交叉验证调整模型,并记录性能特征。由于发现几个 CpG 位点是再生能力的完美预测因子,我们随后执行了逐步减少数据集的方法,其中,在每一轮开发之后,从数据集中删除最终模型中包含的特征并重新进行开发,总共 50 轮开发周期。所有 50 轮中的所有模型都表现完美(AUC=1.0),可能是因为样本量相对较小而过度拟合。使用在 MATLAB(Mathworks)中生成的 PLSDA 和 PLSR 模型来识别治疗性 hMSC,并使用分泌的细胞因子水平读数作为独立变量,以不同的 hMSC 供体/治疗作为二元结果变量,对来自初始体外研究的 z 分数数据进行训练。使用已建立的内侧半月板横断面 (MMT) 临床前大鼠模型,在 PTOA 的体内临床前模型中验证了预测的治疗性 hMSC(图 1A)。结果:初步研究的数据用于训练 PLSR 预测统计模型。预测模型预测前瞻性地揭示了沿 LV 轴 1 分离的大约六个供体的 hMSC,预测与治疗效果相关,从而预测治疗效果较差和治疗效果较强的供体;因此,6 个样本被指定为可能的“反应者”,6 个被指定为可能的“无反应者”(图 1B)。在甲基化分析中,我们发现在 50 轮开发周期中选定了 119 个 CpG 位点。所有位点均存在显著差异甲基化(P 值 7.5E-8 至 4.1E-4)。与无反应者相比,应答者中大约一半的 CpG 为高甲基化(n=45),其余为低甲基化(n=43)。应答者与无反应者之间平均甲基化值差异最大(Δβ 最高)的 CpG 位点包括 cg14705220(Δβ=0.25 应答者-无反应者 [应答者高甲基化],P =4E-4)和 cg09382002(Δβ=-0.23,P =3E-4 [应答者低甲基化]),图 2。然后,我们对与这些差异甲基化位置相关的基因进行了通路分析。 119 个 CpG 定位到 88 个已知基因。这些基因在 T 细胞信号转导(IL-7 信号转导通路,P =2.27E-3)、吞噬细胞:NK 细胞相互作用(IL-15 产生,P =8.13E-3)和 B 细胞信号转导(April 介导信号转导 P =8.69E-3、B 细胞活化因子信号转导 P =9.09E-3)中的重要通路中富集。有趣的是,差异甲基化基因组位置中富集程度最高的基因网络集中在几个已知的 OA 效应物周围,包括 NFkB 复合物、组蛋白去乙酰化酶 (HDAC) 和机械感受器 (TRPV1) 等 (图 3)。讨论:甲基化数据结果支持了我们的假设,即预测的治疗性 hMSC 将表现出独特的表观遗传特征。我们的数据表明,基于来自 hMSC 的混合细胞 DNA 甲基化数据的模型可以很容易地区分可提供治疗益处的细胞产品和不会提供治疗益处的细胞产品。这些差异甲基化模式中涉及的基因在先前在 OA 中描述的途径中富集。意义/临床意义:DNA 甲基化分析可能有助于在膝关节 OA 关节内注射前筛选 hMSC 供体,以最大限度地提高临床益处。此外,进一步研究我们发现的驱动表观遗传差异的个体细胞亚群可能会揭示出可用于开发未来膝关节 OA 疗法的新途径。致谢:本研究得到了俄勒冈州吴仔人类表现联盟的支持。