摘要虽然对基因-增强子相互作用的调控进行了深入研究,但其应用仍然有限。在这里,我们重建了 CTCF 结合位点阵列,并设计了一种带有 tetO 的合成拓扑绝缘体用于染色质工程 (STITCH)。通过将 STITCH 与连接到 KRAB 结构域的 tetR 偶联以诱导异染色质并禁用绝缘,我们开发了一种药物诱导系统来控制增强子对基因的激活。在人类诱导多能干细胞中,插入 MYC 和增强子之间的 STITCH 下调了 MYC。STITCH 的进行性诱变导致基因-增强子相互作用的优先升级,证实了 STITCH 的强大绝缘能力。STITCH 还改变了 MYC 周围的表观遗传状态。通过药物诱导的时间过程分析发现,H3K27me3 抑制标记的沉积和去除跟随并反映表达变化,但不先于表达变化并决定表达变化。最后,插入 NEUROG2 附近的 STITCH 会削弱分化神经祖细胞中的基因激活。因此,STITCH 应该可以广泛应用于功能遗传学研究。
顺式调节元件(CRE)与反式调节剂相互作用以编排基因表达,但是在多基因基因座中如何协调转录调控尚未实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICO的动态表达的CRE,并编码了T细胞介导的免疫的调节剂。平铺CRISPR干扰(CRISPRI)筛选在常规和调节子集的原代人T细胞中,发现的基因,细胞子集和刺激特异性CRE。与CRISPR敲除筛选和针对转座酶可访问的染色质的测定(ATAC-SEQ)分析确定了在特定的CRISPRI-RESPONSIME元素上影响染色质状态的反式调节剂,以控制共刺激基因表达。然后,我们发现了一个关键的CCCTC结合因子(CTCF)边界,该边界增强了与CTLA4的相互作用,同时还可以防止CD28的混杂激活。通过系统地绘制CRE和相关的反式调节剂直接在原代人T细胞子集中,这项工作克服了长期存在的实验局限性,以解码与免疫稳态至关重要的复杂的多基因基因座中的上下文相关基因调节程序。
印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1,它们在不同类型的细胞中在母体染色体上处于沉默状态。在此亲本染色体上,该结构域的印记控制区激活多顺反子,产生 lncRNA Meg3 和许多 miRNA(Mirg)和 C/D-box snoRNA(Rian)。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并生成了 Rian-/- mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian)是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5' 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
组蛋白去乙酰化酶抑制剂已被研究作为癌症和其他疾病的潜在治疗剂。已知 HDI 可促进组蛋白乙酰化,从而导致开放染色质构象并通常增加基因表达。在之前的研究中,我们报告了一组基因,特别是那些由超级增强子调控的基因,可以被 HDAC 抑制剂拉格唑抑制。为了阐明拉格唑抑制基因的分子机制,我们进行了转座酶可及染色质测序、ChIP-seq 和 RNA-seq 研究。我们的研究结果表明,虽然拉格唑治疗通常会增强染色质的可及性,但它会选择性地降低一组超级增强子区域的可及性。这些基因组区域在拉格唑存在下表现出最显著的变化,富含 SP1、BRD4、CTCF 和 YY1 的转录因子结合基序。 ChIP-seq 分析证实 BRD4 和 SP1 在染色质上各自位点的结合减少,特别是在调节基因(如 ID1、c-Myc 和 MCM)的超级增强子上。拉格唑通过抑制 DNA 复制、RNA 加工和细胞周期进程发挥作用,部分是通过抑制 SP1 表达来实现的。shRNA 消耗 SP1 可模拟拉格唑的几种关键生物学效应并增加细胞对该药物的敏感性。针对细胞周期调控,我们证明拉格唑通过干扰中期染色体排列来破坏 G/M 转换,这种表型在 SP1 消耗时也观察到。我们的结果表明,拉格唑通过抑制超级增强子上的 BRD4 和 SP1 发挥其生长抑制作用,导致细胞抑制反应和有丝分裂功能障碍。
摘要 印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1 ,它们在不同细胞类型的母体染色体上处于沉默状态。在该亲本染色体上,该结构域的印记控制区激活多顺反子,从而产生 lncRNA Meg3 和许多 miRNA( Mirg )和 C / D-box snoRNA( Rian )。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并产生了 Rian − / − mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian )是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5′ 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
DNMT3B 中的双等位基因次等位基因突变会破坏 DNA 甲基转移酶活性并导致免疫缺陷、着丝粒不稳定、面部异常综合征 1 型 (ICF1)。尽管几种 ICF1 表型与异常低甲基化的重复区域有关,但导致其余疾病表型的独特基因组区域仍然基本未知。在这里,我们探索了两个 ICF1 患者衍生的诱导性多能干细胞 (iPSC) 及其 CRISPR-Cas9 校正克隆,以确定 DNMT3B 校正是否可以全面克服 DNA 甲基化缺陷和表观基因组中的相关变化。携带不同 DNMT3B 变体的 ICF1 iPSC 之间整个基因组的低甲基化区域高度可比,并且与 ICF1 患者外周血和淋巴母细胞系中的低甲基化区域明显重叠。这些区域包括大的 CpG 岛结构域,以及几个谱系特异性基因(特别是免疫相关基因)的启动子和增强子,这表明它们在早期发育过程中已被预先标记。CRISPR 校正的 ICF1 iPSC 显示,大多数与表型相关的低甲基化区域在编辑后会重新获得正常的 DNA 甲基化水平。然而,在 ICF1 iPSC 中低甲基化最严重的区域(这些区域也显示出 H3K4me3 水平的最高增加和/或 CTCF 结合异常),表观遗传记忆仍然存在,并且低甲基化仍未得到校正。总体而言,我们证明恢复 DNMT3B 的催化活性可以逆转大多数异常的 ICF1 表观基因组。然而,只有一小部分基因组能够抵御这种拯救,这凸显了逆转由于全基因组表观遗传扰动导致的疾病状态的挑战。揭示持久表观遗传记忆的基础将促进克服这一障碍的策略的发展。