摘要。局部场电位 (LFP) 源自数千个神经元。因此,它们可以为脑机接口 (BMI) 提供持久而稳定的控制信号。在这里,我们评估了在使用基于 LFP 的 BMI 进行 2-D 光标控制期间 2 只猴子初级运动皮层中 LFP 的稳定性。使用无需再训练或适应的仿生 BMI 解码器,猴子表现出高性能,并且保持稳定超过 11 个月。离线时,我们通过从每个会话中的各个特征计算大脑控制的光标速度的解码器并在最后一个会话中使用它们解码速度来检查 LFP 特征的稳定性。许多 LFP 特征与光标速度显示出高度相关性,并且光标速度在 11 个月内变得越来越稳定。这表明猴子学会了运动皮层场电位和输出之间的稳定映射,并且 LFP 将为 BMI 提供高度稳定的信号源。
图 2:Sadtler 等人 (2014) 的 BCI 学习任务。a. 任务结构示意图。受试者首先参与“校准任务”,即他们被动观察屏幕上中心向外的光标移动。记录的运动皮层神经活动用于构建基线解码器并估计内在流形。然后指示受试者在 BCI 控制下执行中心向外的光标移动,首先使用基线解码器,然后使用通过扰动基线解码器构建的扰动解码器。这种扰动可以保持基线解码器与内在流形的对齐(流形内扰动,或 WMP),也可以破坏它(流形外扰动,或 OMP)。b. 内在流形的低维图示及其与本任务中使用的解码器(在方程 3 中定义)的关系。彩色点表示在校准任务的不同试验期间记录的活动模式,由该试验中呈现的光标速度着色。这些刺激的光标速度用右上方插图中的颜色匹配箭头表示,后续光标控制任务中使用的光标目标用绿色菱形表示。引起的神经活动模式主要位于灰色矩形所示的二维平面内,即所谓的内在流形。三个假设的一维解码器用彩色箭头表示,分别标记为基线解码器、WMP 和 OMP。通过将各个活动模式投影到相应的解码器向量上,可以可视化这些解码器的线性读数的相应分量 y 1 。这以绿色标记的一个活动模式为例,图中显示了其在三个解码器上的投影。由于该活动模式靠近内在流形,因此它会从基线解码器和 WMP 产生较大的读数(即远离原点,在三个解码器的交点处),而基线解码器和 WMP 都与内在流形很好地对齐。相比之下,此活动模式通过 OMP 的读数要弱得多(即其在此解码器上的投影更接近原点),因为此解码器远离固有流形。重要的是要记住,此插图是真实任务的简化卡通,其中固有流形是高维的(8-12D 而不是 2D),并且 BCI 任务依赖于两个读数(y 1 ,y 2 ),而不是一个。
在本文中介绍了人类计算机接口(HCI),以允许用户用手势和语音命令控制鼠标光标。系统使用没有代码ML的计算机视觉效果净B4体系结构来识别不同的手势并将其映射到相应的光标运动。目的是创建一种与系统交互的更有效,更直观的方式。主要目的是为现有鼠标控制系统提供可靠且具有成本效益的替代方法,从而使用户可以通过手势和语音命令控制鼠标光标。该系统设计为简单的设置过程,既直观又对用户友好。高度可配置的系统允许用户自定义其工作原理以最适合其需求。通过多个实验评估了系统的性能,这表明基于手势的小鼠控制系统可以准确100%,并可靠地移动鼠标光标。总体而言,该系统可能会改善生活质量,并提高身体残障人士的独立性。
替代人的触摸人物增加了社交媒体喜欢的(研究1)和对产品的心理所有权,因为感觉到了触摸对象的手的身体所有权(研究2-4)。非诊断手移动减弱了这种效果(研究5)。在VR商店购物时,与使用光标相比,手(触摸现在与缺席)的存在对人体所有权的看法增加了。替代触摸(与缺席)增加了产品评估和付款意愿,但与光标条件相对而不是。在跨条件下,产品的心理所有权没有差异。有一个
3 Galgotias University,大诺伊达摘要:计算机是我们生活的重要组成部分,我们的许多日常工作都取决于它们。使它们更容易,更有效地使用是我们一直在努力改进的东西。与计算机交互的最重要工具之一是鼠标。虽然无线老鼠(例如蓝牙鼠标)可以帮助我们切断绳索,但它们仍然需要USB连接,因此它们并非完全没有设备。该系统通过提供一种仅使用相机来控制计算机光标的方法来解决计算机的光标。它使用MediaPipe和OpENCV通过机器学习来检测手势,使用户可以免费移动光标,单击和滚动,并完全免费。这使与计算机进行交互更加容易,更方便,而无需任何额外的设备。
所提出的辅助混合脑机接口 (BCI) 半自主移动机械臂展示了一种设计,该设计 (1) 通过使用传感器观察环境变化并部署替代解决方案而具有适应性,(2) 通过非侵入式脑电图帽接收来自用户脑波信号的命令而具有多功能性。所提出的机器人由三个集成子系统、混合 BCI 控制器、全向移动基座和机械臂组成,其命令映射到与一组特定身体或心理任务相关的用户脑波上。传感器和摄像头系统的实施使移动基座和手臂都具有半自主性。移动基座的 SLAM 算法具有避障能力和路径规划能力,可帮助机器人安全操纵。机械臂计算并部署必要的关节运动,以拾取或放下用户通过摄像头馈送上的脑波控制光标选择的所需物体。使用 Gazebo 对子系统进行了验证、测试和实施。BCI 控制器和子系统之间的通信是独立测试的。使用与每个特定任务相关的预录脑电波数据循环来确保执行移动基座命令;使用相同的预录文件来移动机器人手臂光标并启动拾取或放下动作。进行最终系统测试,其中 BCI 控制器输入移动光标并选择目标点。辅助机器人手臂的成功虚拟演示表明恢复残疾用户的运动能力和自主能力是可行的。
(A) 协议的各个阶段:1. 肌肉活动转化为屏幕光标的移动。在这个图解示例中,右上方的目标出现时会发出相应的声音,提示参与者通过选择性激活两块肌肉将光标从中心移动到目标。灰色方形轮廓显示了这里的八个目标位置,但参与者在每次试验中都只看到一个目标。同样,参与者也看不到此处显示的肌肉图;他们必须了解哪块肌肉与每个方向相关。2. 训练要求学习用每只手臂将光标移动到八个目标位置。3. 训练继续,眼睛上蒙上面罩,以学习仅使用听觉信息执行任务。4. 预测试也仅使用听觉指示和反馈进行。参与者针对 16 个目标(每只手臂 8 个)进行测试,每个目标进行 8 次试验。5. 小睡期间包括对一半目标的 TMR,每只手臂 4 个。6. 后测与预测相同。
仪表板的此部分提供了您站点的 KPI 的全面视图。KPI 使您能够评估和跟踪站点运营的效率、可靠性和生产力。根据此信息,您可以做出明智的决策并确定需要改进的领域。将光标悬停在 KPI 上可查看 KPI 上的工具提示,如下表所述: