胶体系统实验控制的最新进展推动了中尺度热力学装置生产的革命。功能性“教科书”发动机,如斯特林循环和卡诺循环,已在远离平衡的胶体系统中生产出来。同时,此类装置的设计和分析也取得了重大的理论进展。在这里,我们使用热力学几何方法来表征与时变热浴接触的参数谐振子的最佳有限时间非平衡循环操作,特别关注布朗卡诺循环。我们推导出最佳参数化的卡诺循环以及另外两个新循环,并将它们耗散的能量、效率和稳态功率产生相互比较,并与之前测试过的卡诺循环实验方案进行比较。我们证明了,与之前实验测试的方案相比,我们的一款发动机的耗散能量提高了 20%,在其他条件下提高了 ∼ 50%,而我们的最终发动机比我们考虑过的其他发动机更高效、更强大。我们的结果为通过实验实现最佳中尺度热机提供了手段。
可再生能源的生长需要灵活,低成本和有效的电气存储系统,以平衡能源供应和需求之间的不匹配。当电力生产大于需求时,用热泵(HP)将电能(或泵送的热能储能)转换为热能;当电力需求超过生产时,Carnot电池会从两个热存储库(Rankine模式)中产生电力。经典的Carnot电池体系结构的实现不超过60%的往返电效率。但是,使用废热回收(热集成的Carnot电池)的创新体系结构能够达到比热泵的电力消耗大于电动泵的电动循环的电力生产(功率为电力比率),从而提高了技术的价值。可以证明,这种技术的优化是电力最大化和功率功率比(取决于电价等)之间的权衡。在本文中,描述了使用可逆的热泵/有机兰金循环(HP/ORC)的热整合Carnot电池原型的完整开发。它包括选择名义设计点,体系结构,组件和尺寸的选择。第一次实验活动显示,圆形电能比为72.5%,ORC效率为5%(温度提升等于49 K),HP的COP为14.4(温度提升等于8 K)。此外,分析了主组件(体积机和热交换器)的性能。这些结果非常令人鼓舞,因为可以通过优化体积机,更大规模地工作,优化控制和热绝缘,可以轻松提高性能(可能高达100%的往返电能比率)。
摘要 卡诺电池是一种新兴的基载电能存储技术。在充电过程中,该概念通过热泵将多余的电能转换为热能。在放电阶段,动力循环将存储的热能转换回电能。基于有机朗肯循环的卡诺电池依靠技术成熟的组件,可以有效整合低温热源,从而达到相当高的效率。然而,热集成的卡诺电池陷入了功率效率、存储大小和热源利用率之间的权衡。本研究提出了两种方法来尽量减少这种三难困境。第一种方案针对包含闪蒸循环的新型循环布局。模拟结果表明,具有两相膨胀器的有机闪蒸循环可提高卡诺电池的效率,特别是对于高存储温度范围,从而实现更紧凑的存储。第二种方案建议将卡诺电池作为可再生能源和区域供热网之间的高度集成链接。这使得卡诺电池成为一种灵活的部门耦合技术,可以根据需求存储和提供电力和热量。
摘要。本文提出了一种核电站与电网规模储能相结合的方案,称为卡诺电池。当电网中有多余电力时,电加热器会加热熔盐。小型模块化核反应堆产生的蒸汽在外部过热器中用热熔盐加热。为了确保持续过热,该工厂配备了熔盐热能储存器。联合工厂和参考核电站在稳态条件下进行建模和模拟。由于涡轮机入口温度较高,联合发电-储能核电站的效率大大提高。所提出的概念使核电站和卡诺电池的共置比单独的工厂更具吸引力。集成热储存器充当二次电力储存。因此,它超越了压缩空气储存,并且在没有地理和环境限制的情况下与抽水蓄能具有竞争力。
可再生能源的生长需要灵活,低成本和有效的电气存储,以平衡能源供应与需求之间的不匹配。泵送的热能储存(PTE或Carnot电池)在电气产生大于需求时,用热泵(或其他加热系统)将电能转换为热能;当电力需求超过生产时,PTE会从两个热存储库(可能是Rankine循环模式)产生电力。经典PTES架构的成就不超过60%的往返电力效率。但是,使用废热回收率(热积分PTE)的创新档案能够达到比热泵的电力消耗大的功率循环的电力生产,从而增加了技术的价值。在本文中,开发了一个通用模型来根据两个主要输入(废热和环境空气温度)绘制性能映射。无论储存配置如何,当废热温度高,气温较低并且热泵的提升时,可以达到最佳性能。最后,将热整合的PTE技术与其他能量储藏的技术进行了比较,并且由于其高往返效率,低特定的价格和没有特定的地理条件,因此在理论上是有希望的。©2020 Elsevier Ltd.保留所有权利。
可再生能源的生长需要灵活,低成本和有效的电气存储,以平衡能源供应和需求之间的MIS匹配。当电力生产高于需求时,Carnot电池通过从电阻加热器或热泵系统中存储热能(充电周期模式)来缓冲电能。当电力需求高于生产时,Carnot电池会从存储的热能(功率周期模式)产生电力。本文是对这一新兴和新技术的评论,包括市场分析。首先,描述了Carnot电池的不同技术和配置。这包括充电周期,功率周期和热量储能系统。此外,还提供了世界上现有原型的最先进。该技术的性能指标尚不清楚,本文试图定义客观绩效指标。最后,比较了所有描述的技术,并得出结论,以帮助工程师为给定情况选择最佳技术。