过渡金属氧化物(TMO)由于其性质和应用范围而引起了显着关注。具有高度电负氧原子的过渡金属离子的部分填充的d轨道产生了独特的电子结构,由于其磁性,光学和结构特性,导致多种应用。这些特性对化学反应具有直接影响,该化学反应能够为催化中的特定应用定制材料,例如电催化和光催化。虽然TMO的潜力有希望,但它们的发展功能性能带来了许多挑战。在这些挑战中,确定适当的合成过程和采用最佳特征技术至关重要。在这篇全面的综述中,将概述高度功能性TMO的综合和表征以及陶瓷的概述以及对催化应用的强调涵盖。中孔材料在增强其在各种应用中的功能方面起着关键作用,并将被涵盖。Ab-Initio建模方面。
酶是一种非常强大的生物催化剂,在几乎所有的生化过程中都发挥着至关重要的作用。(1)酶具有极高的催化速率和无与伦比的选择性,是解决人类面临的诸多问题(包括能源危机、制药业、环境污染和粮食短缺)的极具吸引力的催化剂。(2、3)此外,通过人工引入金属离子辅因子,可以大大扩展天然酶的功能,从而加速化学转化,促进氧化还原化学、自由基过程和具有挑战性的化学反应。(4)然而,蛋白质、底物和过渡金属复合物的正确放置和有效的相互作用已被证明具有挑战性,因此这些金属酶达到的催化效率通常低于分离的小分子复合物。(5、6)
二氧化碳减少二氧化碳,后过渡金属取代的Keggin型多氧计降低了Elizabeth Gibson教授(泰恩河畔纽卡斯尔大学),高度活跃且磁性可回收的异质性催化剂,用于将生物量用于生物质量的生物质量的液体液化剂,用于高质量的Bio-OimAss Bio-Fir shathi shathi Mukundan( MIB(曼彻斯特大学)的生物填补厂教授尼尔·迪克森(Neil Dixon)
从头开始设计高效酶的能力将对化学、生物技术和医学产生深远的影响。过去十年来,蛋白质工程的快速发展让我们乐观地认为,这一目标触手可及。含有金属辅因子和非典型有机催化基团的人工酶的开发表明,如何优化蛋白质结构以利用非蛋白质元素的反应性。与此同时,计算方法已用于根据过渡态稳定的基本原理设计用于各种反应的蛋白质催化剂。尽管设计的催化剂的活性很低,但已使用广泛的实验室发展来生成高效的酶。这些系统的结构分析揭示了设计活性更高的催化剂所需的高精度。为此,新兴的蛋白质设计方法(包括深度学习)特别有望提高模型准确性。在这里,我们总结了该领域的关键发展,并强调了新的创新机会,这些机会应该使我们能够超越当前的技术水平,并实现稳健的生物催化剂设计以满足社会需求。
摘要:在2011年,出现了一种新型的超链连接聚合物(HCP),称为编织芳香聚合物(KAPS),其特征是它们具有非凡的化学和热稳定性,其孔隙率特性,尤其是其合成的简单性,其合成的简单性是基于以前的芳族单体的结合而没有任何均可进行的。下一个逻辑步骤是将金属掺入这些网络中,以支持不同的可溶性分子催化剂或金属纳米颗粒(NPS)。因此,在过去的十年中,含金属KAP的数量逐渐增长,我们认为,在报告的第一个KAPS诞辰10周年中,对所有含金属的KAP的审查及其在异质金属催化剂中的应用是强制性的。在本综述中,总结所有包含金属的KAP的最相关特征,分为两个大组,分为金属络合物或金属NP,并根据金属掺入的类型进行分类。最后,根据每个研究的反应中使用的金属进行比较,并评论了这些类型的材料的未来目标。
1化学研究所和纳米科学和纳米技术中心,希伯来耶路撒冷大学,耶路撒冷,91904,以色列2化学系 - Ångström实验室,Ångström实验室,UPPSALA大学,乌普萨拉大学,第523箱,SE-75120 UPPSALA,SWEDEN 3. 3PU, United Kingdom 4 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom 5 Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America 6 Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America 7美国北卡罗来纳大学,美国美国化学系教堂山8号国家可再生能源实验室,美国9号科罗拉多大学,科罗拉多大学,科罗拉多大学,科罗拉多大学,科罗拉多州,科罗拉多州,美国80309,美国化学系10,美国牛津大学,牛津大学,牛津大学,牛津大学,英国牛津大学,英国牛津大学,美国耶鲁大学。
摘要 近来,人们对相干性作为量子热力学资源的问题产生了浓厚的兴趣。然而,迄今为止,分析主要集中在一些人为的理论模型上。我们试图通过研究量子光学相干性的“催化”性质,将这些想法更接近实验研究。这里考虑了相干态腔场与两级原子序列的相互作用,这种状态在量子光学中普遍存在,是稳定的经典光源的模型。使用 Jaynes - Cummings 相互作用哈密顿量,可以形成动力学的精确解,并分析原子和腔态随每次原子场相互作用的演变。以这种方式,当相干性转移到原子序列时,可以检查相干态的退化。在使用相干性作为热力学资源的背景下,腔模式中相干性的相关退化是重要的。
在Ni前体浸渍之前,在N 2等离子体中处理了一系列CEO 2支持,以评估这种影响对金属支持界面和催化性能的影响。使用一套表征方法确定了这种影响,包括X射线衍射(XRD),H 2温度编程还原(H 2 -TPR),EXATU和原位X射线吸收光谱(XAS)和原位Kerr-Gert-Gert-Gert-Gert-Gert-Gert-Gated Raman。联合和自洽的结果表明,CEO 2的血浆处理可以导致氧气空位数量越来越多,并且在样品中处理了1小时的长距离顺序损失,从而在Ni Metal Nanoparticles和Bulk Bulk CEO 2之间实现了高度有缺陷的CEO X膜。然而,这位高度有缺陷的CEO X表面显着增强了Ni-CEO X的相互作用,从而导致许多与支持的较小Ni NP,从而改善了CO 2甲烷的催化性能。原位弥漫性反射率红外傅立叶变换光谱(漂移)表明,缺陷密集的ni-ceo X界面形成了更具骨质的桥接碳酸盐(Vs. Bidentate Chelate)的形成,它们在反应过程中更容易消耗,表明了重要的参数以实现重要的参数(ch 4 00 c)。
摘要。石墨烯是具有出色特性的纳米材料,可以在催化领域广泛使用。通过功能化,石墨烯衍生物可以表现出多种结构。在本文中,已经引入了各种石墨烯衍生物,包括卤素掺杂的石墨烯,石墨烯胺和石墨烯的羧基。在悬聚卤素的石墨烯中,获得了电池前进的成功结果。具有良好的感应应用,并且在催化过程中显示出有希望的使用。羧基石墨烯在湿条件下提高其稳定性。石墨烯的催化性能与其结构密切相关。因此,在这项工作中还讨论了原子石墨烯的不同催化特征。PT用于ORR,石墨烯用于增加其接触面积以提高效率。氮掺杂的石墨烯增强了碳的反应性,其ORR过程发生在酸性条件下。磷磷烯的石墨烯具有可靠的电催化激活和良好的ORR稳定性。掺杂的石墨烯在基本ORR条件过程中表现出良好的稳定性和高效率。总而言之,石墨烯的衍生物在催化中具有重要的应用值。 这项工作将有助于对石墨烯进行催化的进一步研究。总而言之,石墨烯的衍生物在催化中具有重要的应用值。这项工作将有助于对石墨烯进行催化的进一步研究。
