对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些
摘要:通过膦配体将金属配合物与其磷酸反离子连接,为非对称反离子导向催化 (ACDC) 提供了一种新策略。一种简单、可扩展的合成路线可以得到具有手性磷酸功能的膦的金 (I) 配合物。该配合物产生一种催化活性物质,阳离子 Au(I) 中心和磷酸反离子之间具有前所未有的分子内关系。串联环异构化/亲核加成反应展示了将催化剂的两种功能连接在一起的好处,通过在异常低的 0.2 mol % 催化剂负载下实现高对映选择性水平(高达 97% ee)。值得注意的是,该方法还与无银方案兼容。■ 简介
摘要:催化是现代社会必不可少的基石,支持了超过80%的制成品并驱动了90%以上工业化学过程的生产。随着对更有效和可持续过程的需求增长,需要更好的催化剂。了解催化剂的工作原理是关键,在过去的50年中,表面增强的拉曼光谱(SER)已成为必不可少的。在1974年发现,SERS已演变为一个成熟而有力的分析工具,转变了我们在学科跨学科中检测到分子的方式。在催化中,SERS已使人们能够洞悉动态表面现象,从而在非常高的空间和时间分辨率下促进了催化剂结构的监测,吸附物相互作用和反应动力学。本评论探讨了SER在催化和能量转化领域的成就以及未来的潜力,从而强调了其在推进这些关键研究领域中的作用。关键字:表面增强的拉曼散射,SER,电催化,光催化,热催化,等离子体催化,能量转换,能量储存
社会面临着巨大的挑战,以维持和改善世界上每个人的生活,涉及健康,环境,能源,食物,水,最后但并非最不重要的是和平。尽管许多方面在实现这些目标方面发挥了作用,但资源的可用性及其可持续用途仍处于保证社会福祉的最前沿。化学将是提供解决方案的主要力量,现在,如果没有化学在合成和催化中所做的贡献,世界就无法维持世界。尽管化学的进步取得了巨大进步,但随着世界不断增长的人口和减少的化石原料,仍需要开发新的合成方法和技术,以实现可再生资源作为化学生产基础的转型。催化在驱动化学过程中起着重要作用。然而,催化剂通常是基于通常比黄金稀少的贵金属,这使得它们被土壤丰富的金属替代,这是对未来的巨大需求。结合了光催化和流动化学等新兴技术,可再生原料用3D的金属催化剂的催化转化是最大的挑战之一,但也是几代人将获得可持续未来的最大希望之一。本课程将在可再生资源转换的背景下概述当前的合成和催化状态,重点是用3D-Metal的催化剂,例如Iron,Iron,cobalt,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickelt,catalys,Palladium,Rhodium或Ruthenium等珍贵金属催化剂。
摘要:在这里,我们报告了用酶(以下称为DNA-酶游泳者)装饰的基于DNA的合成纳米结构,可以通过将酶促底物转换为溶液中的产物来进行自propel。DNA-酶游泳者是从通过DNA瓷砖杂交自发地组装的管状DNA结构中获得的。我们用两种不同的酶,尿素酶和过氧化酶使这些DNA结构官能化,并表明它们在添加酶促底物(即尿素和H 2 O 2)后表现出浓度依赖性运动并增强扩散。为了证明这种基于DNA的游泳者的可编程性,我们还设计了从DNA支架中取代酶的DNA链,从而充当DNA游泳者的分子“制动器”。这些结果是开发基于合成DNA的酶驱动游泳者的原理的第一个证明,这些游泳者可以在流体中自行自行。■简介
摘要 自然系统通过高效和宽带能量捕获来驱动光合作用的高能反应。过渡金属光催化剂同样将光转化为化学反应性,但受限于光操作并且需要蓝光至紫外激发。在光合作用中,光捕获和反应性都通过分离到不同的位点得到了优化。受这种模块化架构的启发,我们通过将光合集光蛋白 R-藻红蛋白 (RPE) 共价连接到过渡金属光催化剂三(2,2 0-联吡啶)钌(II) ([Ru(bpy) 3 ] 2+ ) 来合成生物混合光催化剂。光谱研究发现,吸收的光能有效地从 RPE 转移到 [Ru(bpy) 3 ] 2+ 。生物混合光催化剂的实用性通过增加硫醇-烯偶联反应和半胱氨酰脱硫反应的产率来证明,包括在红光波长下恢复反应性,其中[Ru(bpy) 3 ] 2+单独不吸收。
比较了CVI在Ga 2 O 3上沉积在Ga 2 O 3上的PD行为,以与甲醇的CO 2的氢化进行比较。ga 2 o 3仅是不活跃的,但是在2 O 3中具有良好的转换,并且选择性高达89%,至CH 3 OH。在2 O 3中,向催化剂中添加PD的影响相对较小,但是相反,将PD添加到Ga 2 O 3中,具有很大的作用,引起了对甲醇的高活性和选择性。两种氧化物形成PD Interallics -PD 2中的PD 2和PD 2 GA。然而,对于催化剂中,氧化物的厚(〜3 nm)叠加剂也有厚度(〜3 nm),而对于GA催化剂,则没有这样的覆盖层。因此,这就是为什么与ga。此外,研究了Pd和Zn共沉积对GA o o o₃o和IN₂O₃中的影响,以及支持形态的效果。在PD和Zn的共沉积后,还原后,3催化剂中的PD 2保持相位稳定,而PD 2 GA合金被PDZN取代,并改善了甲醇的产量。
尽管现代催化行业的发展很快,但催化剂设计仍主要基于反复试验的实验手段。结果,催化剂开发和商业化的时间表可能需要10到20年。[1]理解催化中所述的微观机制被认为是催化行业的重要方面,即缩短开发新的异质催化剂的时间范围,其中在催化过程中涉及多个阶段。为促进催化剂,原子建模的结构 - 特性关系的理解,例如,基于力场的依赖计算和经典分子动力学(MD)模拟,已广泛用于探索催化机制和新型异构催化剂的催化机制和设计。在许多情况下,催化过程的原子建模取决于构成催化系统的多体系统的大量能量和力评估。需要考虑明确溶剂的效果,或者需要对纳米颗粒催化剂的尺寸依赖性特性进行建模时,问题就会变得更加复杂,这可以使基于密度功能理论(DFT)基于模拟的模拟可行。[2]因此,我们看到了MLIP在催化研究中的相对较高的应用,例如用于研究催化剂的吸附性能,结构预测和动力学。[3–5]
2%PD/CEO 2(58.8±2.1 KJ mol -1)> 0.1%PD/CEO 2(43.8±2.2 kJ mol -1),表明0.1%PD/CEO 2具有原子分散的PD物种的催化剂在CO 2水电中产生了本质上的活性。通过表面PD原子归一化的反应速率进一步证实了这一点,该反应速率通过PD含量(表S1)和通过CO滴定确定的PD分散(图s6)。观察到,随着PD载荷的降低,反应速率显着提高,其中0.1%PD/CEO 2催化剂不仅仅仅催化CO 2氢化为CO,而且表现出更多的
在过去的几十年中,塑料产量和塑料废物不雄厚的指数增长引起了全球不断提高的关注。1 - 3为了减轻塑料废物的环境影响,必须开发塑料回收方法以外的土地和焚化。虽然机械回收已用于恢复热塑性塑料,但再生的原材料因降低而产生。4,5化学回收吸引了近年来的研究兴趣。4,6 - 9打破聚合物骨架中的C - C,C - O或C - N键可以使后消费者塑料转化为新材料的构件。例如,多核的氢解会产生有价值的产品,例如液体燃料,蜡和润滑剂。 10 - 12
