下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
结果:研究总共包括47名参与者(PL,n = 16; CFD,n = 15; CF,n = 16)。在24周的随访中,干预组中血糖状况恶化的参与者分别为14.29%,13.33%和31.25%。然而,在排除研究中排除先前的糖尿病时,主要结果,血糖状态的进展是统计上不同的,p-值= 0.046(p <0.05)。以及24周随访时2型糖尿病的发生率在三组之间在统计学上不同,14.29%,13.33%和12.5%,p-值= 0.699(p <0.05)分别在CFD,CF,CF,PL组中。次要结果也未能证明饮食补充剂对血糖,脂质纤维纤维,体重,BMI和血液化学的影响。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是在考虑这三个要素之间的权衡的情况下最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于使模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和实际在赛道上行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用 CFD 再现轮胎因侧向力而变形时的气流,而这在风洞中无法用实际车辆再现,这为在赛道上行驶的车辆周围的气流带来了新的发现。其中一些发现已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
哈佛·洛马克斯 (1922-1999) 哈佛·洛马克斯是计算流体力学 (CFD) 领域的先驱,他将有限差分技术应用于大规模并行计算,加速了该领域的发展。从 1944 年到 1994 年,他的研究生涯长达 50 年,奠定了 NASA 艾姆斯研究中心在该领域的领导地位。高层管理人员认识到洛马克斯工作的理论和实践潜力,将 CFD 确立为实验室的战略方向。他们为艾姆斯研究中心带来了许多在洛马克斯指导下精通计算机的空气动力学家。20 世纪 70 和 80 年代,随着管理层为研究人员提供的计算机能力不断增强,CFD 在艾姆斯研究中心也不断发展,使得数值风洞取代真实风洞成为评估气流的主要方法。洛马克斯对 CFD 的主要贡献是计算了飞机在达到音速时周围的非稳定气流。洛马克斯并不是 CFD 的发明者。该领域的创始人应归功于约翰·冯·诺依曼,他在二战后在洛斯阿拉莫斯国家实验室从事有限差分技术研究。1 此外,埃姆斯的其他理论家,包括米尔顿·范戴克、弗兰克·富勒和比尔·默斯曼,对流体流动的计算工作都早于洛马克斯。然而,当其他人还在计算亚音速和超音速流动的影响时,洛马克斯已经解决了最复杂流动的方程,这为
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................................1 1.1 流体建模.....................................................................................................................................................2 1.2 计算建模......................................................................................................................................................2 1.3 混合建模......................................................................................................................................................3 2. 空气污染空气动力学的里程碑....................................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模.....................................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................................1结构.................................
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................1 1.1 流体建模....................................................................................................................................2 1.2 计算建模....................................................................................................................................2 1.3 混合建模.......................................................................................................................................3 2. 空气污染空气动力学的里程碑.........................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模....................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................1结构.................................................................................16 3.3 建模与自然通风................................
本文分析了一种新型全玻璃直通真空管集热器的热性能建模和性能预测。开发了管的数学模型,并将其纳入 CFD 软件进行数值性能模拟。为了提高集热器的热性能预测,考虑了不同的人工神经网络 (ANN) 模型。采用包含 200 多个样本的综合实验数据集对模型进行测试。将热模拟模型与 ANN 模型相结合,使用建模的集热器输出作为输入模型之一,显著提高了 ANN 模型的预测精度。与 ANN 模型相比,仅基于 CFD 模型的预测精度最差。卷积神经网络 (CNN) 模型被证明是预测精度最好的 ANN 模型。关键词:太阳能集热器;真空管;神经网络;多元线性回归;CFD;热性能;预测