摘要 - 这项研究列出了通过乳液形成方法预处的壳聚糖微观结构中的长矛油(SMO)的封装。SMO虽然具有药物意义,但由于其在条件下的稳定性较小和高波动性,但在医疗和功能纺织品中发现了lim的应用。尽管如此,它在壳聚糖中的封装可能会增强其在上述目的的稳定性和适用性。使用不同的分析技术表征了SMO封装的壳聚糖微观结构,并通过柠檬酸的绿色交联应用棉织物。经过处理的织物揭示了通过SEM和FTIR分析证实的微胶囊的成功粘附在其表面上。那里观察到处理的织物的拉伸强度略有下降;然而,通过减少其99%的人口,改善了折痕恢复行为和良好的抗菌活性,以应对广谱细菌菌株;而这种织物的刚度在某种程度上表现出趋势。因此,在此产生的增值多功能纺织品可以为潜在的医疗和医疗保健应用提供表面和抗菌活性,而不会损害其舒适性。
2型糖尿病(T2DM)是扩大的全球健康问题之一,是最常见的代谢性疾病,其特征是高血糖,这显着有助于产生活性氧(ROS)。文献中已经提到了400多种具有降血糖活性的植物。Clitoria ternatea(C。ternatea)通常称为蝴蝶豌豆或亚洲鸽子,是Fabaceae家族的植物种类成员。这项研究的主要目的是评估链霉菌素(STZ)产生的正常和糖尿病2中的甲状腺梭菌(CT-MX)和/或壳聚糖负载的纳米颗粒(CHNPS)抗透明血糖和抗氧化作用的甲醇提取物。总共将20个雄性白化大鼠分为4组,对照非糖尿病(NC),STZ/糖尿病控制,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNPS组。28天后,评估了评估评估胰岛素水平,空腹血糖(FBG),天冬氨酸转氨酸酶(AST),丙氨酸转氨酶(ALT),超氧化物歧化酶(SOD),谷胱甘肽(GSH),脂质过氧化物过氧化物和mRNA基因的表达。对胰腺组织进行了组织病理学和免疫组织化学研究。在STZ/糖尿病(GP2)大鼠中,FBG,AST,ALT以及CDKN1A和TP53基因表达的水平显着增加。此外,高血糖诱导的肝氧化态可以通过SOD和GSH水平的脂质过氧化和恶化的显着增加来证明。纳米载体剂在抗氧化后显示出极好的抗血糖和作用,使其成为糖尿病患者的有前途的技术。相反,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNP都显示出与糖尿病相关并发症的明显改善。但是,STZ/糖尿病 + CT -CHNP(GP4)大鼠显着抑制了产生的氧化应激和改善的抗氧化活性,肝功能和胰岛素分泌。此外,与GP2相比,它们的胰腺截面具有正常分布和β细胞数量的正常再生胰腺内分泌胰岛,与GP2相比,具有正常分布和β细胞的数量,并抑制炎症和凋亡基因表达的建筑。
摘要:几丁质及其衍生物壳聚糖是自然界中极为丰富的聚合物,存在于各种海洋和非海洋物种的外壳和外骨骼中。由于它们具有生物相容性、生物降解性、无毒性和非免疫原性等优良特性,它们因其巨大的潜在生物医学应用而受到关注。壳聚糖的多阳离子表面使其能够与药物分子形成氢键和离子键,这是其最有用的特性之一。由于壳聚糖具有生物相容性,因此可用于药物输送系统。壳聚糖基纳米粒子的开发也促进了壳聚糖作为局部输送药物的药物输送系统的重要性。此外,几丁质可用于癌症治疗,作为将抗癌药物输送到特定部位的载体,并通过降低细胞活力发挥抗增殖作用。最后,壳聚糖可用作伤口敷料,以促进皮肤上皮细胞的更快再生和成纤维细胞的胶原蛋白生成。正如本综述中讨论的那样,几丁质和壳聚糖在医学领域有着多种应用。认识到这两种聚合物的生物医学应用对于组织工程和纳米生物技术的未来研究至关重要。
此预印本版的版权持有人于2024年6月14日发布。 https://doi.org/10.1101/2024.06.12.598760 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月7日。 https://doi.org/10.1101/2025.02.07.636955 doi:Biorxiv Preprint
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
番石榴的后衰减后,主要是由储存时间中的微生物物种引起的。因此,分离出可能导致番石榴后腐烂的真菌和细菌物种分离并评估低分子量(LMW)壳聚糖与纳米二氧化物(Nano Sio 2)的抗菌和抗真菌能力(LMW)壳聚糖结合使用。这项研究成功地隔离了四种真菌物种,即热孢子虫,cladosporium sphaerospermum,Aspergillus wentii,colletototrichum acutatum和三个细菌种类,不,无论是azotobacter sp。发现,有0.04%纳米SIO 2和1%低分子壳聚糖44.5 kDa的混合物能够以最高的抗菌区直径和生长真菌的最低直径进行测试。这项工作为延长番石榴的延长货架寿命的潜在化合物。
目的:这项研究的目的是开发抗炎剂槲皮素(QU)的结肠靶向纳米关节系统,并评估各种参数的公式,这些系统可以通过更好的药物和治疗性能在预定的时间和位置释放活性成分。材料和方法:使用中央复合材料设计使用离子胶化方法为此目的制定了槲皮素负载的壳聚糖纳米颗粒。在优化的槲皮素装载壳聚糖纳米颗粒(QLCN)的配方中涂上Eudragit S 100(ES 100),使用了油溶剂蒸发过程中的油。粒径(PS),多分散性指数(PDI),扫描电子显微镜(SEM)和药物释放(%DR)以表征纳米颗粒。结果:槲皮素加载的壳聚糖纳米颗粒的平均PS 114.2±1.42 nm和多分散指数0.396±0.02,而Eudragit涂层纳米颗粒显示PS 330.2±0.40 nm和Polydispersity Index 0.412 0.412±0.412±0.02。使用SEM证实制备的纳米颗粒的表面形态。根据对纳米结构制剂的体外药物释放分析,QLCN上的ES 100涂层抑制了胃肠道上层系统中槲皮素的释放,表现出良好的结肠药物靶向。结论:根据纳米颗粒制剂的体外释放研究,QLCN上的ES 100涂层限制了槲皮素在上层胃肠道系统中的释放,显示有效的结肠药物靶向。
1 北京大学口腔医学院·医院口腔材料科,北京 100081;dandan66x@126.com (DX);yuanshenpo@163.com (SY) 2 口腔数字化医疗与材料国家工程实验室,国家口腔疾病临床研究中心,口腔数字医学与材料北京市重点实验室,国家药品管理局口腔材料重点实验室,卫生部数字化口腔工程与技术研究中心,北京 100081;drwangfeilong@126.com 3 北京大学口腔医学院·医院修复科,北京 100081 4 国家药品管理局医疗器械技术审评中心,北京市海淀区 100081;panshuo@cmde.org.cn * 通信地址:liuyunsong@hsc.pku.edu.cn (YL); xuyx@hsc.pku.edu.cn (YX)
抽象背景:三重阴性乳腺癌(TNBC)是一种侵袭性肿瘤,其死亡率极高,由于缺乏有效的治疗靶标。作为与肿瘤发生和肿瘤转移相关的粘附分子,分化44(也称为CD44)在TNBC中过表达。此外,特定的透明质酸类似物,即壳聚糖寡糖(CO)可以有效地获得CD44。在这项研究中,设计了一个共涂层的脂质体,将光杀手(HPPH)作为660 nm光介导的光敏剂和Evofofosfamide(也称为TH302),为缺氧激活的前药。获得的脂质体可以通过荧光成像来帮助诊断TNBC,并通过协同光动力疗法(PDT)和化疗产生抗肿瘤治疗。结果:与非靶向的脂质体相比,靶向脂质体在体外表现出良好的生物相容性和靶向能力。在体内,靶向脂质体具有更好的荧光成像能力。此外,载有HPPH和TH302的脂质体比在体外和体内的其他单一疗法组表现出明显更好的抗肿瘤作用。结论:令人印象深刻的协同抗肿瘤效应,加上优质的荧光成像能力,良好的生物相容性和较小的副作用,使脂质体赋予了诊断和过表达癌症治疗的未来转化研究的潜力。关键字:三重阴性乳腺癌,光动力疗法,壳聚糖寡糖,CD44,脂质体