我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。
14 如果值得做,就值得过度做:阈值定理 227 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................................242 14.7 连接与阈值定理 ..................................................................................................................................................................................................................245
14 如果值得做,就值得过度做:阈值定理 227 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................................242 14.7 连接与阈值定理 ..................................................................................................................................................................................................................245
开放标签,单臂,第2期临床试验成人获得的成年血友病A先前未接受免疫抑制(n = 47)患者皮下接受emicizumab(在第1和第1和第2周的第1和第2天,每周为6和3 mg/kg),直到第12周,但没有免疫抑制。随访时间为24周。主要终点是每周临床相关的出血数量,直到第12周。emicizumab被认为有效,这是在研究和免疫抑制中观察到的倾向评分匹配的速率(n = 101)。
摘要 - 本文考虑了通用古典量子(CQ)通道的极地代码的设计和解码。通过使用量子消息(BPQM)来解码,尤其是配对测量BPQM(PM-BPQM)解码的想法。由于PM-BPQM解码器接受经典的密度演化(DE)分析,因此可以使用DE来设计任何CQ通道的极性代码,然后有效地计算代码速率和错误概率之间的权衡。我们还针对极地代码实施了PM-BPQM解码器的经典模拟。虽然可以在量子计算机上有效地实现解码器,但在古典计算机上模拟解码器实际上具有指数复杂性。因此,解码器的仿真结果受到限制,主要是为了验证我们的理论结果。
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。
作为 Connext® 产品套件的开发者,RTI 拥有全球规模最大的专注于 DDS 的工程和专业服务团队。全新 RTI Connext® AUTOSAR Classic 集成工具包现已面向 Connext Drive 用户推出,作为 Connext® Micro 和 Connext® Cert 的补充产品。该工具包提供了一个代码生成工具,支持跨标准格式(OMG® IDL、OMG DDS-XML 和 AUTOSAR ARXML)自动转换数据类型定义,并生成支持 C 代码,用于在运行时环境 (RTE) 和 DDS 通信框架之间进行数据转换和数据编组。
14 如果值得做,就值得过度做:阈值定理 225 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................240 14.7 连接与阈值定理 ..................................................................................................................................................................................................................243
量子数据访问和量子处理可以使某些经典的难处理学习任务变得可行。然而,在不久的将来,量子能力只会提供给少数人。因此,需要允许经典客户端将学习委托给不受信任的量子服务器的可靠方案,以促进广泛获得量子学习优势。基于最近引入的经典机器学习交互式证明系统框架,我们开发了一个用于经典量子学习验证的框架。我们展示了经典学习者无法有效自行解决的学习问题,但他们在与不受信任的量子证明者交互时可以有效可靠地解决这些问题。具体来说,我们考虑了具有均匀输入边际分布的不可知学习奇偶校验和傅里叶稀疏函数问题。我们提出了一种新的量子数据访问模型,我们称之为“混合叠加”量子示例,在此基础上我们为这些任务提供了有效的量子学习算法。此外,我们证明了不可知量子奇偶性和傅里叶稀疏学习可以通过仅具有随机示例或统计查询访问的经典验证器有效地验证。最后,我们展示了学习和验证中的两种一般场景,其中量子混合叠加示例不会导致样本复杂度优于经典数据。我们的结果表明,量子数据用于学习任务的潜在能力虽然不是无限的,但可以通过与不受信任的量子实体交互而被经典代理利用。
量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离