AUC 0-∞,等离子体浓度下的面积 - 从0到无穷大; AUC 0-24H,血浆浓度下的面积 - 时间曲线从0到24小时; CMAX,最大观察到的血浆浓度; %CVB,参与性的变异系数;疯狂,多个上升剂量; MDZ,咪达唑仑; NC,未计算; PK,药代动力学; QD,每天一次;悲伤,单次上升剂量; T 1/2,终端半衰期; tmax,时间到cmax; VH-184,VH4524184。
缩写:Cmax:脑内巴瑞替尼的最大浓度,小鼠实验:在小鼠中实验观察到的,QIVIVE BBB:血脑屏障渗透的定量体外-体内外推,QSAR:定量结构-活性关系。
可增加地高辛的血浆最大血浆浓度(Cmax:36%)和曲线下面积(AUC:20%)。建议在同时使用时进行治疗药物监测,并根据需要调整地高辛的剂量。
可增加地高辛的血浆最大血浆浓度(Cmax:36%)和曲线下面积(AUC:20%)。建议在同时使用时进行治疗药物监测,并根据需要调整地高辛的剂量。
摘要:背景:顺铂是治疗头颈癌的关键药物,个性化剂量应有助于保存最佳的毒性 - 耐耐性比。方法:我们分析了80例头颈癌的成年患者的暴露效应关系,并用标准的基于顺铂的治疗方案治疗,该治疗方案为三小时输注。使用贝叶斯方法鉴定出顺铂的个体药代动力学(PK)参数。肾脏毒性和耳毒性被认为是典型的顺铂相关毒性。效率。测试了多达9种不同的机器学习算法,以解读与顺铂的暴露效应关系。结果:广义线性模型是最佳算法,精度为0.71,召回0.55,精度为0.75。在暴露的各种指标中(即最大浓度(CMAX),面积曲线(AUC),低谷水平),CMAX,包括2.4至4.1 µ g/ml的范围,是最好的范围。在比较了20名新患者中的导致的,模型的剂量与标准剂量时,我们的策略将导致患者的剂量减少,这些患者最终证明患有严重毒性,同时增加进行性疾病患者的剂量。结论:确定目标CMAX可以用作为三小时输注的顺铂为PK引导的精确剂量铺平道路。
ciclosporin:进行了一项研究,以评估ciclosporin(一种有效的P-糖蛋白抑制剂)对西他列汀药代动力学的影响。单一100 mg口服剂量的西他列汀和单个600 mg口服剂量的ciclosporin的共同给药分别增加了西二列汀蛋白的AUC和CMAX,分别增加了约29%和68%。这些变化在西他列汀药代动力学中没有被认为具有临床意义。西他列汀的肾脏清除率没有有意义地改变。因此,与其他P-糖蛋白抑制剂的有意义的相互作用不会发生。西他列汀对其他药物高速毒素的影响:西他列汀对血浆地高辛浓度的影响很小。在每天使用0.25 mg地高辛和100 mg的西替列汀施用10天之后,地高辛的血浆平均增加了11%,而血浆CMAX的平均为18%。不建议对地高辛的剂量调整。然而,当西替普汀和地高辛同时给予有毒素毒性风险的患者应受到监测。
表 70:根据 CTCAE 毒性等级划分的血液学基线变化:中性粒细胞计数 ............................................................................................................................................. 168 表 71:根据 CTCAE 毒性等级划分的血液学基线变化:血小板计数 ............................................................................................................................. 169 表 72:按发生率递减顺序列出的选定异常血清化学实验室测试摘要 ............................................................................. 170 表 73:FDA MCL 安全人群中常见 (≥ 10%) TE 实验室异常 ............................................................................. 172 表 74:FDA 汇总安全人群中常见 (≥ 10%) TE 实验室异常 ............................................................................. 173 表 75:按年龄组划分的安全性摘要 ............................................................................................. 179 表 76:FDA 对重大标签变更的描述 ............................................................................................................. 189用于定量人血浆中吡托替尼的生物分析验证总结 ...................................................................................................................................................... 205 表 78:用于定量人血浆中吡托替尼的生物分析验证总结 ...................................................................................................................................... 206 表 79:方法修改和交叉验证结果总结 ...................................................................................................................... 211 表 80:研究 18001 中的群体药代动力学和暴露-反应分析的基线患者特征总结 ............................................................................................. 215 表 81:研究 18001 中的药代动力学收集时间表 ............................................................................................. 216 表 82:群体模型中的药代动力学和协变量参数 ............................................................................................. 217 表 83:来自疗效 Logistic 回归模型的参数估计值 ............................................................................................. 227 表 84:MCL 的分析集........................................................................................................... 228 表 85:平均浓度-反应模型的参数估计值 ...................................................................................... 231 表 86:基于平均吡托替尼浓度,模型预测的每次剂量反应比例 ................................................................................................................ 231 表 87:谷浓度-反应模型的参数估计值 ............................................................................................. 233 表 88:基于谷浓度,模型预测的每次剂量反应比例 ............................................................................................. 233 表 89:安全性 Logistic 回归模型的参数估计值 ...................................................................................................... 237 表 90:任何等级的中性粒细胞、血小板和血红蛋白的暴露-安全性关系的线性回归结果 ................................................................................................................ 239 表 91:收缩压和舒张压的暴露-安全性关系的线性回归结果 ............................................................................................................................. 239 表 92:研究 18001 中按研究阶段和计划起始剂量纳入 PK 和暴露-反应分析的患者人数 ............................................................................................................. 241 表 93:每个吡托替尼剂量水平下收缩压和血小板计数相对于基线的平均预测变化 ............................................................................................................. 242 表 94:吡托替尼作为酶和转运蛋白介导途径的受害者或实施者的 DDI 潜力........................................................................................................................... 243 表 95:吡托替尼的 PBPK 输入参数 .............................................................................................. 245 表 96:健康受试者单次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ............................................................................................................................. 246 表 97:健康受试者多次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ............................................................................................................................. 246 表 98:伊曲康唑和羟基伊曲康唑的 PBPK 输入参数 ............................................................................................. 250........................................................... 243 表 95:吡托替尼的 PBPK 输入参数 .............................................................................. 245 表 96:健康受试者单次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ................................................................................................................................ 246 表 97:健康受试者多次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ................................................................................................................................ 246 表 98:伊曲康唑和羟基伊曲康唑的 PBPK 输入参数 ............................................................................................................. 250........................................................... 243 表 95:吡托替尼的 PBPK 输入参数 .............................................................................. 245 表 96:健康受试者单次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ................................................................................................................................ 246 表 97:健康受试者多次服用 200 mg 后吡托替尼的观察值和模拟值 Cmax 和 AUC ................................................................................................................................ 246 表 98:伊曲康唑和羟基伊曲康唑的 PBPK 输入参数 ............................................................................................................. 250
研究药物从给药部位移动到药理作用部位并从体内消除的过程称为“药代动力学”。影响药物在体内移动(动力学)和命运的因素有:(1)从剂型中释放;(2)从给药部位吸收进入血液;(3)分布到身体各个部位,包括作用部位;(4)通过代谢或排泄原形药物从体内消除的速率。这些过程通常用首字母缩略词 ADME 来表示:吸收、分布、代谢和排泄。药物的 ADME 参数用各种术语来描述,例如 Cmax(血清中药物的最大浓度);Tmax(达到最大药物浓度的时间)
患有特定背景的患者16.6例肾功能障碍16.6.1患者在肾功能障碍患者中口服100毫克舍曲林(24例患者)口服,肉豆质的血浆浓度倾向于肾脏功能障碍引起的血浆浓度较高,但由于肾脏功能障碍而增加,但增加了20个)(较小的20)。肝功能障碍16.6.2患者口服口服100毫克舍曲林的血浆浓度趋势对慢性肝衰竭(Child-Pugh分类A和B,10例)患者的CMAX的CMAX高约1.7倍,而在ACUC 0-∞和2.3次中,CMAX的率高约为1.7倍,而在2.3次中高4.4倍。此外,当对肝功能障碍的患者(经过修订的儿童 - 佩格分类A和B,10)中反复给予50 mg的舍曲林50 mg,持续21天,观察到与单个给药进行21的情况相同的趋势(外国数据)。 [参见9.3]老年人16.6.3老年人抑郁症患者(日本,5名男性,8名女性,65岁以上)每天一次重复口服舍曲林,持续6周(从25毫克/天增加到75 mg/天)。 T 1/2(男性为30.7小时,女性为35.7小时)的趋势比健康的成年男性更长15),22)。舍曲林每天反复口服一次30天(从50毫克/天增加到200毫克/天,向老年人(外国人,11名男性,11名女性,65岁及65岁)和成年人(外国人,11名男性,11名男性,11名女性,年龄在18-45岁),由50 mg/day Day afters Admak提高到200 mg/day Day to 200 mg to 200 mg new to 200 mg/days afters afters。 117.5 ng/ml,低于老年人(135.4 ng/ml,女性,147.1 ng/ml)和成年女性(165.6 ng/ml),但任何组之间的AUC均无显着差异。23),23),24),24)。 [参见9.8]药物相互作用16.7华法林16.7.1健康的成年男性(15例)在给药前和第22天之前,给予单一口服剂量的华法蛋白0.75 mg/kg,并比较了凝血酶蛋白反应时间曲线(AUC 0-120)和血浆蛋白质蛋白质结合速率下的面积。当观察到Certraline和Warfarin的组合给药8),25)(外国数据)时观察到略有显着的变化。 [参见9.1.7和10.2]托丁二酰胺16.7.2在单次静脉内服用tolbutamide在健康的成年雄性(25例患者(25例)静脉内和静脉内增加50 mg/day Day)之前,检查了1000 mg tolubutamide的药代动力学在1000 mg tolubutamide(25例)中静脉内服用1000 mg tolubutamide(25例)。舍曲林和甲丁酰胺的组合施用显示甲丁酰胺清除率为9)(外国数据)。 [参见10.2] Cimetidine 16.7.3当对健康的成年雄性(12例)重复800 mg Cimetidine的药代动力学(12例)和100 mg的舍曲氨酸在第二天的静脉剂量中给药。与安慰剂10的组合相比,西依米丁的组合将纤维素蛋白的AUC 0-∞增加了约50%,CMAX和T 1/2的组合增加了约25%(外来数据)。 [See 10.2] Others 16.8 Sertraline Tablets 25mg "YD" was considered biologically equivalent based on the elution behavior based on the elution behavior, based on the "Guidelines for Bioequivalence Testing for Oral Solid Products with Different Contents (February 29, 2012, Pharmaceutical and Food Review No. 10)" when sertraline tablets 50mg "YD" was used作为标准配方。 (5)007 420a
学生摘要 论文“下一代药物输送:靶向方法的比较评估”探讨了药物输送系统的演变和进步,特别关注靶向药物输送系统 (TDDS)。该研究强调了传统药物输送方法的局限性,例如全身分布导致脱靶效应和生物利用度低。它强调需要创新方法来提高治疗效果,同时最大限度地减少不良反应,特别是在癌症治疗中。本文严格评估了各种下一代 TDDS,包括基于纳米颗粒的系统、抗体-药物偶联物和刺激响应系统,评估了它们的有效性、安全性和临床转化潜力。通过比较这些先进技术,该研究旨在深入了解它们对精准医疗和药物输送未来的影响。关键词:药物输送系统、靶向药物输送、基于纳米颗粒的系统、精准医疗、治疗效果。 1. 简介术语“药物输送系统”是指药物制剂,例如片剂、胶囊、软膏或溶液。 “控释药物输送系统”或“受控药物输送系统”是指采用旨在调节药物随时间释放动力学的技术的制剂。这些控释系统不同于传统制剂,后者通常会立即释放大部分或全部药物,而无需任何调节。因此,传统制剂通常被称为“速释”(IR)制剂。药物输送技术的演变可以通过多种方式来表征,例如通过治疗类别和输送模式。在这种情况下,通过美国食品药品管理局 (FDA) 批准的产品重点介绍新技术来说明这种演变。尽管药物输送技术在不断进步,但制剂成功的真正衡量标准在于其经过验证的安全性和有效性,正如 FDA 批准所证明的那样,这最终使患者能够从这些创新中受益。理论上,提供缓释的制剂可以与速释 (IR) 制剂一样有效,前提是血液中的药物浓度保持在最大安全浓度 (Cmax) 以下并高于最低有效浓度 (Cmin)。Cmax 与 Cmin 的比率称为治疗指数。由于大多数药物的治疗指数足够宽,即使过量摄入也能保持安全,因此血液药物浓度的变化通常不会影响整体疗效。控释药物输送系统始于 Smith, Kline & French 的 Spansule® 技术