执行数字飞行数据记录器 (DFDR) 定期强制读数的组织已制定程序,以确保正确解释数据框布局文档中的所有信息,用于相关记录装置的定期强制读数,并且仅对已转换为工程单位的数据进行任何评估。此外,组织发布的任何报告都应通过文件编号和发布状态引用执行读数的数据框布局文档。
执行数字飞行数据记录器 (DFDR) 定期强制读数的组织已制定程序,以确保正确解释数据帧布局文档中的所有信息,用于定期强制读取相关记录装置,并且仅对已转换为工程单位的数据进行任何评估。此外,组织发布的任何报告都应通过文件编号和发布状态引用执行读数的数据帧布局文档。
摘要——基于轨迹的运营 (TBO) 将需要新的程序和系统来实现空中交通运营的适当自动化。自动化运营的程序和系统密切相关,因此通常需要以组合的方式对它们进行建模。我们的团队目前正在采用最新的面向代理的方法来获取有关 TBO 场景的概念模型。概念模型定义了空中交通实体的角色及其相互作用,并详细描述了实体的架构和动态行为。在本文中,我们提出了一种基于方法分析和设计 TBO 场景的多代理系统的驾驶舱功能架构。所提出的设计具有映射到可执行模型以对 TBO 概念进行分析模拟的优势,其模块化架构允许逐步集成具有特定功能的其他底层模型。
摘要 — 基于轨迹的运营 (TBO) 将需要新的程序和系统来实现空中交通运营的适当自动化。自动化运营的程序和系统密切相关,因此通常需要以组合方式对它们进行建模。我们的团队目前正在采用最新的面向代理的方法来获取有关 TBO 场景的概念模型。概念模型定义了空中交通实体的角色及其相互作用,并详细描述了实体的架构和动态行为。在本文中,我们提出了一种基于方法分析和设计 TBO 场景的多代理系统的驾驶舱功能架构。所提出的设计具有映射到可执行模型以对 TBO 概念进行分析模拟的优势,其模块化架构允许逐步集成具有特定功能的其他底层模型。
°C 摄氏度 AAIB 航空事故调查处 ADIRU 空中数据/惯性参考装置 AEEC 航空公司电子工程委员会 海拔高度 AOC 航空运营商证书 APU 辅助动力装置 ARINC 空中无线电公司 ATA 航空运输协会 ATC 空中交通管制 BCD 二进制编码的十进制 BITE 内置测试设备 BNR 二进制补码表示法 CB 断路器 CFO 巡航副驾驶 CG 重心 CMC 中央维护计算机 COM 命令处理器 CS 认证规范 CVR 驾驶舱语音记录器 DIN 离散输入 DITS 数字信息传输系统 DLRB 数据加载路由盒 DMC 显示管理计算机 DOUT 离散输出 DTSB 荷兰运输安全委员会 DU 显示单元 EASA 欧洲航空安全局 ECAM 电子中央飞机监视器 EFIS 电子飞行仪表系统 EIS 电子仪表系统 EW/D 发动机和警告显示器 FAA 联邦航空管理局 FAR 联邦航空条例 FCDC 飞行控制数据集中器 FCMC 燃油控制和监控计算机 FCOM 飞行机组操作手册 FDC燃油数据集中器 FDR 飞行数据记录器 FL 飞行高度 FMGEC 飞行管理指导和
在 1980 年以后制造的飞机中,所有电子飞行仪表系统 (EFIS) 都更为先进,取代了单独的 ADI 和 HSI。当今的飞机(2009 年)仅使用一台 AMLCD 彩色显示器,供飞行员和副驾驶员使用,位于他们正前方。第三个共享彩色显示器显示所有发动机指示器和机组警报系统 (EICAS)。这些显示器取代了大量的仪表组,这使得飞行员投入大量精力和眼球扫描来查看、理解、分析并采取相应步骤,以确保飞机安全飞行。所有计算机生成的刻度盘仪表都遵循“基本 T”配置。机载计算机根据飞行阶段自动决定和选择需要向飞行员展示哪些仪表,以“需要知道”为基础。飞行有各种明确定义的阶段,例如从出发点的地面滑行、起飞、爬升、巡航、下降和地面滑行到到达航站楼。
正常运行期间,左侧 MFD 的上部窗口显示 EICAS 页面,包括发动机指示、全时系统指示和 CAS 消息。右侧 MFD 的上部窗口显示 SUMMARY 页面或电子检查表。对于维护操作,右侧 MFD 的上部窗口还可以显示维护诊断系统信息。左右 MFD 的下部窗口均可显示概要页面或导航信息。TCAS 交通、地形、天气和闪电等叠加层可以以 PPOS 导航格式显示。使用光标控制面板 (CCP) 控制 MFD。
系统电源由位于飞行员仪表板右下方标有 STBY PWR ON/OFF/TEST 的开关控制。飞机机头处有一个单独的 10.5 安培小时密封铅酸电池组。充满电后,如果飞机完全断电,电池至少可以运行 3.5 小时。电池组由飞机的电气系统不断充电,因此在断电时应充满电。STBY PWR 开关必须处于 ON 状态才能自动切换电池电源。当 SFD 处于 ON 状态且飞机的电气系统未对应急电源电池充电时,STBY PWR 开关旁边的琥珀色 ON 灯会亮起。当 SFD 开关保持在弹簧加载的 TEST 位置时,电池和电路的自检完成。向显示系统施加 28V 直流电会启动姿态初始化过程,该过程由 SFD 上显示的“姿态初始化”消息来识别。初始化过程持续时间通常小于180秒。
冰探测器由一个振动传感元件(探头)组成,该元件与暴露在气流中的支撑支柱结合在一起。支柱的主要目的是将探头延伸到气流中足够远的地方,以允许液滴撞击传感探头。当冰在传感元件上积聚时,通过传感元件谐振频率的变化可以检测到冰的积聚。电子设备主要由带有嵌入式软件、信号调节和电源硬件的微控制器组成。微控制器计算传感器频率,控制加热器功能,调节输出信号,并执行各种内置测试 (BIT) 功能。内部软件控制两个离散输出信号,这些信号以适合显示遇到的任何结冰情况或机组人员手动激活飞机防冰系统故障的方式与飞机航空电子设备接口。
RAT 配备有 RAT 发电机加热器,除 RAT 部署和运行时外,该加热器在飞行的所有阶段都通电。加热器的目的是防止发电机气隙内的水分冻结。部署后,RAT 会在驾驶舱内产生中等程度的噪音和振动。一旦 RAT 部署完毕,就必须用重新收起泵将其重新收起在地面上。
