摘要:近年来,基于深度学习的方法已被应用于合成孔径雷达(SAR)图像的目标检测。然而,由于SAR的成像机制和低信杂噪比(SCNR),利用SAR图像进行飞机检测仍然是一项具有挑战性的任务。针对这一问题,提出了一种基于相干散射增强和融合注意机制的低SCNR SAR图像飞机检测新方法。考虑到人造目标与自然背景之间的散射特性差异,引入相干散射增强技术来增强飞机散射信息并抑制杂波和斑点噪声。这有利于深度神经网络后续提取有关飞机的准确和有判别力的语义信息的能力。此外,开发了一种改进的Faster R-CNN,该网络具有一种融合局部和上下文注意的新型金字塔网络。局部注意通过增强重要对象的可区分特征来自适应地突出显示重要对象,而上下文注意则有助于网络提取图像的不同上下文信息。融合局部注意力和上下文注意力可以保证飞机被尽可能完整地检测到。在TerraSAR-X SAR数据集上进行了广泛的实验以与基准进行比较。实验结果表明,所提出的飞机检测方法在低SCNR下可以达到高达91.7%的平均精度,显示出有效性和优于许多基准。
金属卤化物钙钛矿半导体在太阳能电池中表现出色,在薄膜中添加过量的碘化铅 (PbI 2 ),无论是作为介观粒子还是嵌入域,通常都会提高太阳能电池的性能。甲脒碘化铅 (FAPbI 3 ) 钙钛矿薄膜的原子分辨率扫描透射电子显微镜显微照片显示,FAPbI 3:PbI 2 界面非常相干。结果表明,这种界面相干性是通过 PbI 2 偏离其常见的 2H 六方相形成三角 3R 多型体来实现的,这是通过包含近八面体单元的弱范德华力层堆叠中的微小移动实现的。揭示了精确的晶体学界面关系和晶格错配。进一步表明,这种 3R 多型 PbI 2 具有与钙钛矿相似的 X 射线衍射 (XRD) 峰,因此基于 XRD 对 PbI 2 存在的量化不可靠。密度泛函理论表明,该界面不会在带隙中引入额外的电子态,因此在电子上是良性的。这些发现解释了为什么在钙钛矿薄膜生长过程中 PbI 2 略微过量可以帮助模板钙钛矿晶体生长并钝化界面缺陷,从而提高太阳能电池的性能。
固态自旋缺陷,尤其是具有可能可实现的长相干时间的核自旋,是量子记忆和传感器的诱人候选者。但是,由于其内在四极杆和超细相互作用的变化,它们的当前性能仍然受到限制。我们提出了一个不平衡的回声来克服这一挑战,通过使用第二个自旋来重新调整这些相互作用的变化,同时保留存储在核自旋进化中的量子信息。不平衡的回声可用于探测材料中的温度和应变分布。我们开发了第一个原理方法来预测这些相互作用的变化,并揭示了它们在大温度和应变范围内的相关性。在钻石中大约10 10个核自旋中进行的实验表明,增加了20倍的去态时间,受到其他噪声源的限制。我们进一步表明,与实验中的相比,我们的方法可以重新调整更强的噪声变化。
多发性硬化症 (MS) 是一种影响中枢神经系统 (CNS) 的神经退行性疾病。在 MS 中,免疫系统会攻击大脑和脊髓中的神经纤维和髓鞘。其后果是整个 CNS 出现炎症、脱髓鞘和轴突变性,破坏神经细胞过程并改变大脑中的电信息。确诊 MS 很困难,尤其是在疾病的早期阶段,此时症状可能很轻微、零星,甚至类似于其他疾病状况。诊断基于 McDonald 标准,包括从神经系统检查和神经系统症状史中提取的临床、放射学和实验室参数 [1]。McDonald 标准的初始版本于 2001 年提出,并经过多次修订。最新标准可追溯到 2017 年。要根据 2017 年 McDonald 标准诊断为 MS,个人必须有证据表明中枢神经系统因炎症而受到损伤,并且炎症在空间和时间上不断扩散。当神经损伤出现在中枢神经系统的多个部位或神经系统的多个区域时,就会发生空间播散。具体而言,McDonald 2017 标准确定病变应出现在神经系统以下四个区域中的至少两个:大脑的脑室周围、近皮质或皮质、幕下区域和脊髓。当神经损伤发生在患者病史的多个时间点时,就会发生时间播散。损伤可以通过第二次疾病恶化、新病变的出现或相同区域损伤发生在不同时间的证据(例如,不再活跃发炎的旧病变周围出现新的炎性病变)来证明。大脑和脊髓的磁共振成像 (MRI) 用于检测 MS 损伤的典型斑块或疤痕。钆增强病变是活动性炎症区域,因此可以使用钆 MRI 来区分活动性和非活动性病变。此外,脑脊液 (CSF) 中存在寡克隆带 (OB) 表明存在中枢神经系统炎症。患有临床孤立综合征 (CIS) 的个体经历过一次 MS 症状发作,因此不符合时间播散标准。对于这些个体,OB 已被确定为复发的独立预测因素。因此,McDonald 2017 标准将 OB 检测呈阳性确立为充分标准,即使在仅在其病史的一个时间点显示明显损伤的患者中,也可以取代时间播散标准。不幸的是,MRI 和 CSF 评估耗时、昂贵且具有侵入性。例如,磁共振设备价格昂贵,图像采集时间可能为 10 到 30 分钟。钆注射有副作用,例如注射部位疼痛、恶心、瘙痒、头晕和头痛。脑脊液样本是通过腰椎穿刺采集的,在局部麻醉下大约需要半小时。它可以被描述为令人不快和痛苦的,副作用可能包括穿刺区域感染和头痛。出于这些原因,值得探索补充或替代标准,以便在经过适当验证后将其纳入麦当劳标准。
通用量子计算和量子模拟需要多量子比特架构,具有精确定义、稳健的量子比特间相互作用,以及局部可寻址性。这是一个尚未解决的挑战,主要是由于可扩展性问题。这些问题通常源于对量子比特间相互作用的控制不佳。分子系统是实现大规模量子架构的有前途的材料,因为它们具有高度的可定位性和精确定制量子比特间相互作用的可能性。最简单的量子架构是双量子比特系统,可以使用它实现量子门操作。为了可行,双量子比特系统必须具有较长的相干时间,量子比特间相互作用必须定义明确,并且两个量子比特还必须在相同的量子操纵序列中单独寻址。本文介绍了对氯化三苯甲基有机自由基的自旋动力学的研究结果,特别是全氯三苯甲基 (PTM) 自由基、单官能化 PTM 和双自由基 PTM 二聚体的自旋动力学。在低于 100 K 的所有温度下,都发现了高达 148 μ s 的超长集合相干时间。证明了双自由基系统中的双量子比特和单个量子比特可寻址性。这些结果强调了分子材料在量子架构开发方面的潜力。
固态自旋缺陷,尤其是可能实现长相干时间的核自旋,是量子存储器和传感器的有力候选者。然而,由于其固有四极子和超精细相互作用的变化,它们当前的性能仍然受到失相的限制。我们提出了一种不平衡回波来克服这一挑战,即使用第二个自旋重新聚焦这些相互作用的变化,同时保留存储在核自旋自由演化中的量子信息。不平衡回波可用于探测材料中的温度和应变分布。我们开发了第一性原理方法来预测这些相互作用的变化,并揭示它们在较大温度和应变范围内的相关性。在金刚石中大约 10 10 个核自旋的集合中进行的实验表明,受其他噪声源的限制,失相时间增加了 20 倍。我们进一步通过数值表明,我们的方法可以重新聚焦比我们实验中更强的噪声变化。
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
人们将社会反馈的实例视为相互依存的,对他们的整个自我概念的潜在影响。人们如何在自我概念中保持积极和连贯性,同时从反馈中更新自我观看?我们提出了一个净工作模型,描述了大脑如何代表特征之间的语义依赖关系,并使用此信息来避免阳性和连贯性的总体丧失。男性和女性参与者在进行自我评估任务中都会收到社交反馈,同时进行功能性磁共振成像。我们通过将增强学习模型纳入网络结构中来建模自我更新。参与者从正面反馈中得知,从积极的反馈中学到了更快的学历,并且不太可能改变网络中具有更多依赖性的性状的自我查看。此外,参与者在网络关系中返回了传播的反馈,同时根据网络相似性检索先前的反馈以告知正在进行的自我查看。在腹侧前额叶皮层(VMPFC)中激活反映了受约束的更新过程,以使积极反馈导致更高的激活和负面反馈对具有更多依赖性的性状的激活减少激活。此外,VMPFC与网络中先前自我评估的性状相对于特征的新颖性有关,并且鉴于先前的反馈相关性,角回与更确定性的自我确定性相关。我们建议,有选择地增强或减轻社会反馈并检索过去相关经验以指导正在进行的自我评估的神经计算可能支持整体积极和连贯的自我概念。