摘要 — 本文旨在研究由与波导耦合的腔量子电动力学 (cavity-QED) 系统的相干反馈控制引起的双光子动力学。在该装置中,腔中的二能级系统可以作为光子源,发射到波导中的光子可以在波导中传输和反射后多次与腔 QED 系统重新相互作用,在此过程中反馈可以调节进出腔的光子数量。我们在两种情况下分析了该相干反馈网络中双光子过程的动力学:波导和腔之间的连续模式耦合方案和离散周期模式耦合方案。这些耦合方案的不同之处在于它们的相对尺度和用于耦合的半透明镜的数量。具体而言,在连续模式耦合方案中,双光子态的产生受波导反馈回路长度以及波导与腔-QED系统之间的耦合强度的影响。通过调整波导长度和耦合强度,我们能够有效地产生双光子态。在离散周期模式耦合方案中,腔中的Rabi振荡可以稳定,并且波导中没有明显的双光子态。
摘要:具有高相干性的热排放,尽管不如激光的热排放,但在许多实际应用中仍然起着至关重要的作用。在这项工作中,通过利用几何扰动诱导的光学晶格三倍和相关的光辉区折叠效果,我们提出并研究中红外的热排放,并同时具有高时空和空间连贯性。与我们先前工作中的倍增扰动的情况相反,引导模式分散带的陡峭部分将折叠到三元格式中的高对称性γ点。在这种情况下,特定的发射波长仅对应于非常小的波形范围。因此,除了以30 nm左右的实验带宽为特征的高时间相干性外,所达到的热排放还具有超高的空间相干性。计算表明,在中红外的热发射波长下,空间相干长度很容易达到MM尺度。关键字:三元光栅,光彩区折,准引导模式,中红外,连贯的热发射器
抽象的光学非线性在几种类型的光学信息处理协议中至关重要。但是,使用常规光学材料实现相非线性所需的高激光强度代表了几个光子体制中非线性光学的挑战。我们引入了一种红外腔量子电动力学(QED)方法,用于在反射设置中对单个THZ脉冲的非线性相移,以输入功率为条件。功率依赖性相位在0的顺序上移动。1π只能使用仅几个µW输入功率的飞秒脉冲来实现。所提出的方案涉及少量的子带量子量井过渡偶极子,始终耦合到红外谐振器的近场。由于通过有效的偶极chiring机制从材料偶极向红外真空的频谱非谐度转移,该场演化是非线性的,该机制会瞬时从真空场中瞬时破坏量子孔的过渡,从而导致光子阻滞。我们开发了分析理论,该理论描述了印记非线性相位转移对相关物理参数的依赖性。对于一对量子井偶极子,相对于偶极转变频率和松弛速率的不均匀性,相位控制方案显示出可靠的。基于lindblad量子主方程的数值结果验证了材料偶极子填充到第二激励歧管的制度中的理论。与需要强烈的光 - 物质相互作用的常规QED方案相反,所提出的相位非线性在弱耦合方面最有效,从而增加了使用当前的纳米光电技术实现实验实现的前景。
量子状态的相干叠加是量子信息处理的重要资源,它将量子动力学和信息与经典对应物区分开。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,包括受监视的Quanth Quanth动力学和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve之间通过对固定数量的量子台进行应用和调查来竞争。Alice应用单位人员试图维持量子通道的容量,而EVE则应用测量方法来摧毁它。通过限制每个对立面可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝扮演旨在模仿通用监测量子动态的随机策略时,我们会发现纠缠和量子通道容量中的相干相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中要求的最小相干性,并通过证明连贯性在任何stabelizer量子误差校正代码中的代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的相干资源要求的严格量化。
量子物理学的一个基本概念,维格纳-亚纳斯信息,在这里被用作与生物磁感应有关的自旋相关自由基对反应中量子相干性的量度。该量度与反应产量的不确定性有关,并且与用于生物化学传递磁场变化的细胞受体-配体系统的统计数据有关。可测量的生理量,例如受体数量和配体浓度的波动,被证明反映了引入的单重态-三重态相干性的维格纳-亚纳斯量度。得出了将生物资源和生物性能系数的乘积与维格纳-亚纳斯相干性联系起来的量子生物不确定性关系。这种方法可以作为在细胞环境中对量子相干效应的一般搜索。
摘要 — 通过比较穿过传感臂和参考臂的光信号,干涉光子传感器使用简单的单波长激光源实现了显著的灵敏度和检测限。原则上,通过比较穿过单个传感波导的两种模式的传播,基于双模波导的传感器可以在不需要参考臂的情况下提供相同的优势。然而,双模传感器的典型实现面临两个挑战:(i) 传感器输入和输出处的突变模式激发和重组效率低下、功率不平衡且产生可能掩盖小传感信号的杂散反射,(ii) 输出信号的正弦性质可能导致读出模糊。这里我们提出了一种螺旋状双模折射率传感器,它具有全模式转换、多路复用和解复用以及相干相位检测,可提供具有紧凑而稳健布局的明确线性相位读出。我们的传感器设计为1550 nm 中心波长,在氮化硅平台上制造,并通过体传感实验验证,检测限达到 1. 67 · 10 −7 RIU。
摘要:电子系统与晶格振动的耦合及其时间有关的控制和检测提供了对半导体非平衡物理学的独特见解。在这里,我们研究了使用宽带光泵 - 探针显微镜封装的半导体单层2 h -mote 2的超快瞬态响应。低于40 fs泵脉冲在A'和B'激子共振的光谱区域中极度强烈且长寿的连贯振荡,这是由于最大瞬态信号的约20%,这是由于平面外A 1G语音的位移激发。从头算计算揭示了由平面外拉伸和晶体晶格的压缩诱导的单层MOTE 2的光吸收的重排,与A 1G型振动一致。我们的结果强调了单层TMD对小结构修饰的光学特性的极端敏感性及其用光操纵。关键字:连贯的声子,激子,超快光谱,过渡金属二分法,二维材料,单层,Mote 2 E
由于Lidar已成为传感器世界中的热门话题,这主要是由于ADA和自动驾驶领域的努力,因此已经出现了关于直接检测(或飞行时间)还是相干(例如,频率调制连续波,例如)光子检测是最佳的辩论。实际上,“最佳”在很大程度上取决于应用程序。LIDAR用于从交通管理,驾驶员援助和自动驾驶,地面映射到气象应用的各种应用中。不同的激光雷达性能指标的重要性 - 最大范围,准确性,干扰免疫,成本等。- 因应用程序而异。即使在同一应用程序中,某些系统选择也可能偏向一个或另一个参数的重要性。本文旨在讨论直接和连贯检测的不同特征,以教育对LiDAR感兴趣的人并允许他们做出知情的系统选择。
我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。