我们发现了研究两级原子与两个腔中的一个腔在相干叠加中相互作用的新特征。Jaynes-Cummings 模型用于描述原子场相互作用并研究量子不确定性对这种相互作用的影响。我们表明,以未定义的方式对两个腔进行相干控制可以实现按需操纵原子动力学的新可能性,而这在传统方式中是无法实现的。此外,我们还表明,原子的相干控制会产生高度纠缠的腔场态,呈贝尔态或薛定谔猫态。我们的研究结果对理解和利用相干控制的量子系统迈出了一步,并为利用量子不确定性研究原子场相互作用开辟了一条新的研究途径。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。
在过去的 20 年里,教育和技术这个广阔的领域中出现了一系列学科。自 20 世纪 80 年代初以来,人工智能与教育(AIED)这个广阔的领域应运而生,旨在结合人工智能(AI)、学习理论和教育实践来改善学习者使用计算机的学习成果(Boyd 等人,1982 年;Holmes 等人,2019 年)。在 AIED 领域中,基于计算和机器学习的力量出现了各种研究子领域,例如智能辅导系统(Aleven 和 Koedinger,2002 年)、自适应超文本系统(Eysink 等人,2009 年;Romero 等人,2009 年)和计算机支持的协作学习(CSCL)。自 20 世纪 90 年代初以来,出现了一系列 CSCL 出版物,探讨学习者和教师如何使用计算机在线协作。大量 CSCL 研究(例如 Gunawardena,1995 年;Roschelle 和 Koschmann,1996 年;Fischer 和 Mandl,2005 年;Rienties 等,2009 年)发现,支架、自我调节、任务设计和教学临场感是鼓励学习者有效合作的重要概念。2000 年代中期,第三批研究人员(例如 Baker 和 Yacef,2009 年;Rosé 等,2014 年)开始使用教育数据挖掘 (EDM),利用更大的数据集和增加数据之间的互连来探索学习过程。自 2011 年以来,出现了第四个研究领域,即学习分析 (LA),它专注于理解复杂的
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
缓解和校准方案对于最大限度地扩大当今的嘈杂中型量子 (NISQ) 硬件的计算范围至关重要,但这些方案通常专门用于解决相干或退相干误差源。因此,量化这两类误差是在对误差抑制工具进行基准测试时理想的特性。在本文中,我们提出了一种可扩展的以周期为中心的方法,用于详细估计相干对硬计算周期误差分布的贡献。我们建议的协议基于周期误差重建 (CER),也称为 K 体噪声重建 (KNR)。该协议类似于周期基准测试 (CB),因为它基于泡利保真度估计提供以周期为中心的诊断 [1]。我们在 CER 中引入了一个额外的超参数,允许硬周期在进行泡利旋转之前折叠多次。对我们添加的超参数的不同值执行 CER 可以通过保真度衰减公式的推广来估计相干误差贡献。我们通过量子模拟器上的数值模拟确认了我们方法的准确性,并在三个 IBM 芯片(即 ibmq_guadalupe 、 ibmq_manila 和 ibmq_montreal )上进行了概念验证实验。在这三个实验中,我们测量了 Z 中存在显著的相干误差偏差。
钻石颜色中心由于其在量子通信1 - 3,量子计算4,5和量子传感6,7中的潜在应用而引起了人们的关注。自旋度的自由度主要用于量子位,这是由于其长度超过1 s 8-10和出色的可控性11,12。然而,轨道自由度的控制对于各种应用,例如零 - 音波线光子的频率调整以及电子状态的低功率控制。通过电场或应变调整零孔线频率的能力对于在远程色中心1、13、14之间产生纠缠至关重要。此外,与磁场与自旋15-17相比,电场或应变与轨道自由度的耦合更强,从而使电子状态具有很高的效率控制。由于强旋轨耦合,在颜色中心18中实现了使用菌株的有效自旋状态控制,这对于在稀释剂中的操作尤其有利。然而,由于NV-
摘要尽管因果关系在叙述中至关重要,但是第二语言(L2)读者通常难以监测其连贯性(因果关系),尤其是当这些关系跨越文本的遥远部分(全球连贯性)时。这项研究检查了L2读者对全球因果关系的监测是否以阅读目标促进。日本大学学生首先阅读叙事文本以进行一般理解,然后在大声思考时了解文本中的因果关系(因果目标)。结果表明,因果目标并没有增加参与者在连贯监测中的成功。但是,此目标定性地改变了导致连贯监视的阅读过程类型。具体来说,推理产生比在理解条件下更强烈地有助于因果目标中的连贯监测。基于这些发现,我们提出了一个新的L2阅读理论模型,即连贯性的两阶段模型,解释了阅读目标对L2过程的定量和定性影响。调查结果表明,教育工作者需要认识到阅读目标并不总是会立即改善学习者的阅读;但是,这是连贯监视和改变阅读行为的第一步。
研究了使用两种方法合成的方解石样品的内部结晶度:溶液沉淀法和碳酸铵扩散法。扫描电子显微镜 (SEM) 分析表明,使用这两种方法沉淀的方解石产品具有明确的菱面体形状,与矿物的自形晶体习性一致。使用布拉格相干衍射成像 (BCDI) 表征这些方解石晶体的内部结构,以确定 3D 电子密度和原子位移场。使用碳酸铵扩散法合成的晶体的 BCDI 重建具有预期的自形形状,具有内部应变场和少量内部缺陷。相反,通过溶液沉淀合成的晶体具有非常复杂的外部形状和有缺陷的内部结构,呈现出零电子密度区域和明显的位移场分布。这些异质性被解释为由非经典结晶机制产生的多个结晶域,其中较小的纳米颗粒聚结成最终的自形颗粒。SEM、X 射线衍射 (XRD) 和 BCDI 的结合使用允许在结构上区分用不同方法生长的方解石晶体,为了解晶粒边界和内部缺陷如何改变方解石反应性提供了新的机会。
1个国家主要实验室,物理与电子科学学院,东中国师范大学,上海200241,200241,中国2,高力量激光与物理学的主要实验室,上海光学与精美机械学院,中国科学学院,上海学院计算成像,中心ÉnergieMat'eriauxt´el'Ecommunications,Institut National de la Recherche Scientifique,Varennes,Qu´ebec J3X1S2,加拿大5,加拿大5个数学科学学院,中国电子科学与技术大学,中国611731,CHENGDU 611731,611731,COMPROTIAN INNINNOV INNBERID CEMPRETINC 7东中国师范大学和山东师范大学,东中国师范大学,上海,200241年,联合研究中心科学和光子综合芯片
在光纤通信中,通常使用光学强度的强度调制方案来传输信号。连贯的光传输协议,其中强度和相位都用于携带信息,也已用于满足更高容量的需求。连贯的光学传输可以通过数字信号处理技术在公里的沙子上进行长途通信,并结合数十种波长在单个光纤中划分。由于这些特征,连贯的光学传输主要用于超过100 km的中继线网络。近年来,由于强度调制以及微型型和降低相干设备的功率消耗,近年来对100 km或更短的DATA中心连接的需求已经迅速增长。