精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
当今的神经科学研究需要使用计算机科学技术来分析和绘制大脑和神经系统极其密集和复杂的神经基础。这些地图虽然视觉上引人注目,但却无法揭示它们所描绘的生命和进化系统。事实上,我们对大脑的结构和功能了解得越多,就越难解释它究竟是如何实现人类行为的。另一方面,计算机科学技术和硬件能力正在以指数级的速度发展,而使用它们所需的巨大能源消耗正在加剧已经让我们不堪重负的问题。这种快速发展的计算能力可以为它所应用的几乎所有主题提供见解,神经科学也不例外。许多最新的深度学习技术都受到大脑结构的启发,例如神经网络和神经形态算法。人类大脑本身就是最高效的计算机,它已经教会了我们很多关于如何使我们使用的硬件更强大、更高效、更智能的知识,并将继续教会我们很多关于如何使我们使用的硬件更强大、更高效、更智能的知识,而这些知识反过来又可以用来帮助我们更好地理解大脑的功能。计算认知或计算认知心理学既包括研究大脑和行为的计算机科学技术,也包括启发计算机科学技术的神经功能模式。增强我们对其中一个主题的理解和知识,有可能对另一个主题产生同样的影响。该领域的研究人员寻求应用计算机模型来揭示有关脑科学的知识,同时也升级我们的模型以使用从神经科学中学到的技术。计算认知不是两个不同的研究领域,而是认识到,通过相同的视角研究大脑和硬盘上发生的计算会受益匪浅。通过将它们的研究分开,或将每个领域视为独立的,我们剥夺了这两个领域可以转移的知识。此外,编码能力直接转化为更广泛的方法技术,人们可以采用这些方法来研究神经系统,同时减少对昂贵设备和资助研究的必要性。加州大学洛杉矶分校设有计算认知和认知心理学专业,以及认知神经科学专业。他们承认并鼓励研究计算与人类智能/认知 1 之间的联系。这些学科在当今的智力和大脑研究中被描述为日益融合。该领域研究人员可用的方法论方法种类繁多,目标明确,仅受程序员的技能和可用数据的限制。编程能力并不
■和法律:x.0 = 0,x.1 = x,x.x = x,x.x'= 0(其中x'不是x)。■或法律:x+0 = x,x+1 = 1,x+x = x,x+x'= 1。■不是法律:(x')'= x,0'= 1,1'= 0。■交换定律:x.y = y.x,x+y = y+x。■关联定律:(x.y).z = x。(y.z),(x+y)+z = x+(y+z)。■分配法律:x。(y+Z)= X.Y+X.Z,X+(y.z)=(x+y)。(x+z)。■吸收定律:x+(x.y)= x,x。(x+y)= x。■de Morgan的定理:(x.y)'= x' + y',(x + y)'= x'.y.y'。○真相表:布尔表达的表达式。它列出了所有可能的
在一个时代,信息占据了至高无上的“屏蔽数据王国:掌握计算机安全的艺术”是浏览复杂数字保护景观的重要指南。这本综合书籍研究了保护敏感数据免受网络威胁所必需的基本原理和高级技术。将理论见解和实际应用结合在一起,涵盖了各种各样的主题,包括加密,网络安全,威胁检测和事件响应。无论您是IT专业人员,网络安全爱好者,还是只是希望增强知识的人,这本书都是您掌握计算机安全艺术的确定资源。
■ 鼓励来自代表性不足的人群(包括不同种族和民族群体和女性)以及资源不足的少数民族服务机构 (MSI) 的研究人员使用尖端、低成本的数据科学资源
地震地球物理学在很大程度上依赖于地下建模,而地下建模基于对现场收集数据的数值分析。在生成一致的地下模型之前,对典型地震实验中产生的大量数据进行计算处理也需要同样大量的时间。电磁油藏数据,如 CSEM(受控源电磁)、岩石物理技术,如多井的电阻率和磁共振,以及工程优化问题,如油藏通量模拟器、井场设计和石油产量最大化,也需要强大的计算设备进行分析。另一方面,在过去十年中,量子计算机的发展取得了很大进展:机器利用量子力学定律比传统计算机更快地解决困难的计算问题。这种进步的一个具体例子就是所谓的量子霸权,最近已经使用专用量子计算机进行了演示 [1-3]。地球科学领域和相关行业(如碳氢化合物行业)有望从量子计算带来的进步中获益。目前,不同的量子技术和计算模型正在不断发展。IBM、谷歌和英特尔等巨头公司正在开发基于超导技术的量子计算机 [4]。其他公司也在投入大量精力构建基于约瑟夫森结的功能齐全的量子计算机,比如北美的 Rigetti,而美国的 IonQ 和奥地利的 AQT 则致力于开发基于捕获离子的计算机 [5]。加拿大公司 D-Wave 是量子退火计算模型的领先者 [6],该公司已经开始交易量子机器,加拿大的 Xanadu 也在提供对其光子量子计算机的云端访问 [7,8]。
(4) 超级计算机是速度最快、价格最昂贵的机器。与其他计算机相比,它们的处理速度更快。超级计算机的速度通常以 FLOPS(每秒浮点运算次数)来衡量。一些速度更快的超级计算机每秒可以执行数万亿次计算。超级计算机由数千个可以并行工作的处理器互连而成。超级计算机用于高度计算密集型任务,例如天气预报、气候研究、分子研究、生物研究、核研究和飞机设计。超级计算机的一些例子是 IBM Roadrunner、IBM Blue gene。由 C-DAC(先进计算发展中心)在印度组装的超级计算机是 PARAM。PARAM Padma 是该系列中的最新机器。PARAM Padma 的峰值计算能力为 One Tera FLOP。
ieee.org › iel7 2023 年 1 月 15 日 — 2023 年 1 月 15 日 实施以提供用于连接的标准 API。 其他系统组件。 ... 用于建模和模拟资源管理技术的工具包。
我们正在快速经历一个历史时刻:人们在一台计算机前工作,由一台小型 CRT 控制,专注于仅涉及本地信息的任务。联网计算机变得无处不在,在我们的生活中以及科学、商业和社会互动的基础设施中发挥着越来越重要的作用。为了在新千年推动人机交互的发展,我们需要更好地理解新兴的交互动态,其中焦点任务不再局限于桌面,而是延伸到一个复杂的网络信息世界和计算机介导的交互。我们认为分布式认知理论在理解人与技术之间的交互方面发挥着特殊的作用,因为它的重点一直是整个环境:我们在其中真正做什么以及我们如何协调其中的活动。分布式认知为如何思考设计和支持人机交互提供了彻底的重新定位。作为一种理论,它专门用于理解人与技术之间的交互。在本文中,我们提出分布式认知作为人机交互的新基础,勾勒出一个综合的研究框架,并使用我们早期工作中的选集来提出该框架如何为数字工作材料的设计提供新的机会。