深度学习和神经网络:多层感知器:多层感知器体系结构,什么是隐藏的层?每一层中有多少层和多少个节点?激活函数:线性传输函数,重型阶跃功能(二进制分类器),sigmoid/logistic函数,软马克斯函数,双曲线切线函数(TANH),整流的线性单元,泄漏的relu。前馈过程:前馈计算,特征学习。错误函数:错误函数是什么?,为什么我们需要一个错误函数?错误总是正面的,均为正方形错误。跨凝性,关于错误和权重优化算法的最终说明:什么是优化?,批处理梯度下降,随机梯度下降,微型批次梯度下降,梯度下降点击。反向传播:什么是反向传播?,反向传播外卖。
摘要 目标:为严重运动障碍患者开发脑机接口 (cBCI) 理想情况下依赖于最终用户和其他利益相关者(如护理人员和研究人员)之间的密切合作。意识到这些群体之间可能存在的意见分歧对于开发可用的 cBCI 和访问技术 (AT) 至关重要。在本研究中,我们比较了潜在 cBCI 用户、他们的护理人员和 cBCI 研究人员对以下方面的意见:(1) 用户希望用 cBCI 控制哪些应用程序;(2) 用户喜欢使用哪些心理策略来控制 cBCI;(3) 用户希望在临床轨迹的哪个阶段了解 AT 和 cBCI。方法:我们收集了 28 名闭锁综合征患者、29 名护理人员和 28 名 cBCI 研究人员的数据。问卷配有动画视频来解释不同的 cBCI 概念,并评估了这些概念的实用性。结果:三组人对最理想的 cBCI 应用的看法一致,但对心理策略和了解 cBCI 的时间存在分歧。动画视频被认为是向最终用户和其他利益相关者解释 cBCI 和心理策略的清晰且有用的工具。结论:利益相关者之间对于用户喜欢使用哪种心理策略以及他们希望何时了解 cBCI 存在明显分歧。为了推进 cBCI 的开发和临床实施,有必要将研究议程与最终用户和护理人员的需求相结合。
低于2.17 K,称为𝝀点,氦流体失去其粘度,表现出非凡的现象,使其名称为“ Superfluid”。本研究旨在揭示这些现象的根本原因。地球上的大多数物质都是通过各种力相互吸引,将固体固定在一起或在流体中产生粘度的分子。超流体是一个例外。在超流体氦气中,分子之间没有吸引力。氦气的简单和对称的原子结构使其不受伦敦分散力以外的大多数分子力的免疫。在低温下,即使伦敦分散力的吸引力也很弱。没有任何分子间吸引,其超流体状态的氦气没有粘度。超流体不是常规的流体,而是单个颗粒的集合。由于过渡到超流体状态涉及断裂键,因此需要能量,从而降低温度并促进过渡。因此,像大多数相变的恒定温度不会在恒定温度下发生过渡。相反,𝝀点标记了过渡的末端,该末端应至少在2.6 K或更高时开始。该预测与观察到的特定热量的曲率在𝝀点附近的曲率保持一致。了解超流体中的分子间吸引力的缺乏解释了许多观察到的现象。这种缺乏吸引力还解释了为什么不能简单地通过降低超氟的温度来形成固体。但是,在高压下可以形成氦固体。这表明一种新型的键称为“压缩键”,可能是由高压下电子云的变形引起的。这种键也可能在极端压力下形成的金属氢中固定在一起,并可以解释金属分子之间的吸引力。
1. 一开始旅行者会同时占据多个坐标(量子叠加现象) 2. 随着退火的进行,位于任意给定坐标的概率会平稳变化,在深谷坐标附近概率会增大 3. 量子隧穿让旅行者可以穿过山丘,而不是被迫爬山,从而减少被困在非全局最小值的山谷中的可能性 4. 量子纠缠进一步改善了结果,让旅行者能够发现通往深谷的坐标之间的关联
摘要 随着元宇宙概念的不断深入,人类在智能技术进步中迈上了新的高度。本文对当前元宇宙中人机交互的研究进行了文献综述,以“元宇宙”、“人机交互”、“虚拟空间”、“虚拟技术”、“三维重建”、“平行宇宙”、“独立身份”、“兴趣获取”、“区块链”等关键词在 Scopus、Web of Science、Google Academic 等数据库的文献中查找相关文章,从 2018 年至 2023 年的 20 000 多篇文献中筛选出近 100 篇关于元宇宙的前沿研究。最后,运用 PRISMA 原则探索和描述元宇宙底层技术的当前应用状态,这些技术包括第五代通信、人机交互、虚拟技术、区块链、3D 重建等。此外,还对人机交互在元宇宙的未来发展做出了预测。评论认为,5G连接的快速推进使元宇宙的概念成为可能,区块链确保了元宇宙虚拟空间中货币交易的安全。人与计算机在虚拟世界中的交互方式将走向“隐形”,换言之,人机交互在数字领域对用户来说是透明的,人与计算机将以自然、平等的方式相处。在交互中,可穿戴设备可以让交互获得身临其境的体验,但它们限制了参与者的行动和感知自由。更人性化的体感连接将在未来获得关注,让人们更接近元宇宙。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
摘要为了揭示神经性疼痛经历的复杂性,研究人员试图使用脑电图(EEG)和皮肤电导(SC)鉴定可靠的疼痛特征(生物标志物)。尽管如此,它们用作设计个性化疗法的临床帮助仍然很少,并且患者处方常见和效率低下的止痛药。为了满足这种需求,新型的非药理干预措施,例如经皮神经刺激(TENS),通过神经调节和虚拟现实(VR)激活外周痛缓解,以调节患者的注意力。但是,所有当前治疗方法都遭受患者自我报告的疼痛强度的固有偏见,具体取决于其倾向和耐受性,以及未考虑疼痛发作的时间的未明确,预定义的会话时间表。在这里,我们显示了一个脑部计算机界面(BCI),该界面检测到来自EEG的神经性疼痛的实时神经生理学特征,并因此触发了结合TENS和VR的多感官干预。验证多感官干预有效减轻了实验性诱发的疼痛后,通过电力诱导疼痛,用13个健康受试者对BCI进行了测试,并在实时解码疼痛中显示了82%的回忆。然后用八名在线疼痛精度达到75%的神经性患者进行了验证,因此释放了在神经性患者疼痛感知中引起显着降低(50%NPSI评分)的干预措施。这为使用完全便携式技术的个性化,数据驱动的疼痛疗法铺平了道路。我们的结果证明了从客观神经生理学信号中实时疼痛检测的可行性,以及VR和TEN的触发组合的有效性以减轻神经性疼痛。
1。工程知识:应用数学,科学,工程基础知识和工程专业知识,以解决复杂的工程问题。2。问题分析:使用数学,自然科学和工程科学的第一原理,识别,制定,审查研究文献并分析复杂的工程问题,得出证实的结论。3。解决方案的设计/开发:用于复杂工程问题和设计系统组件或过程的设计解决方案,这些解决方案或流程满足了指定需求,并考虑了公共卫生和安全以及文化,社会和环境考虑因素。4。进行复杂问题的研究:使用基于研究的知识和研究方法,包括实验设计,数据分析和解释以及信息的综合以提供有效的结论。5。现代工具用法:创建,选择和应用适当的技术,资源和现代工程以及IT工具,包括对复杂工程活动的预测和建模,并了解局限性。6。工程师和社会:应用上下文知识所告知的推理来评估社会,健康,安全,法律和文化问题,以及与专业工程实践相关的随之而来的责任。7。环境与可持续性:了解专业工程解决方案在社会和环境环境中的影响,并证明了对可持续发展的知识和需求。8。道德:应用道德原则并承诺对职业道德,责任以及工程实践的规范。9。个人和团队合作:作为个人,以及在不同团队的成员或领导者以及多学科环境中的成员或领导者。10。沟通:与工程社区以及整个社会进行有效的复杂工程活动进行沟通,例如能够理解和撰写有效的报告和设计文档,进行有效的演讲,并给出清晰的指示。11。项目管理和金融:展示对工程和管理原则的知识和理解,并将其应用于团队的成员和领导者,以管理项目和多学科环境中的成员和领导者。12。终生学习:认识到在技术变革的最广泛背景下进行独立和终身学习的准备和能力。
在Scala/C ++中构建和部署的高性能计算机视觉和建议服务,使用CAFFE/MXNET处理500m+每月请求。●社交媒体SaaS平台的后端Scala开发。AWS微服务堆栈。●研究并发布了生产计算机视觉分类和检测模型。●创建和托管的专有数据集用于培训深度学习模型