上下文。天王星和海王星的气氛以分子氢和氦气为主。在对流层上部(0.1和10 bar之间),甲烷是第三个主分子,它凝结,在CH 4中产生垂直梯度。由于这种凝结物种比H 2重,因此,由于凝结而导致的平均分子量的变化是对流的因素,传统上仅视为受温度的控制。平均分子量的这种变化使干燥和潮湿的对流更加难以启动。观察结果也显示出甲烷丰度的纬度变化,人们可以期望从一个纬度到另一个纬度的不同垂直梯度。目标。在本文中,我们研究了甲烷的这种垂直梯度及其可以采取的不同形状的影响,包括大气方案,尤其是在冰巨头对流层中潮湿对流风暴的形成和抑制。方法。我们开发了一个3D云解析模型,以按要求的规模模拟对流过程。该模型是非静水的,包括与凝结相关的平均分子量变化的效果。结果。使用我们的模拟,我们得出结论,深层大气中干对流的典型速度相当低(以1 m/s的速度),但足以维持向上的甲烷转运,并且在甲烷冷凝水平上的潮湿对流得到了极大的抑制。在冰巨头中,该标准在80 K时产生的临界甲烷丰度为1.2%(大约对应于1条水平)。先前的研究得出了对甲烷蒸气量的分析标准,该标准应在饱和环境中抑制湿对流。我们首先通过数值验证了该分析标准。然后,我们表明这种关键的甲烷丰度控制了对流风暴的抑制和形成,我们得出结论,这些风暴的强度和间歇性应取决于甲烷丰度和饱和度。在CH 4超过深层大气中这种临界丰度的区域(在天王星上的赤道和中纬度和海王星上的所有纬度)中,稳定的层几乎完全充满了甲烷在凝结水平上的饱和。在此层中,潮湿对流被抑制,从而确保稳定性。只有弱潮湿的对流事件才能发生在该层上方,其中甲烷丰度变得低于临界值。抑制潮湿对流可防止强烈干燥并保持较高的相对湿度,从而有利于这些事件的频率。在CH 4在深层大气中保持低于这种临界丰度的区域(可能是在天王星上的杆子上),没有这样的层。更强大的风暴可以形成,但它们也有点稀有。结论。在冰巨头,干对流很弱,潮湿对流受到强烈抑制。但是,当通过干对流和湍流扩散将足够的甲烷向上运输时,零星的潮湿对流风暴就会形成。由于海王星的内部热流和较大的甲烷丰度,这些风暴在海王星上应该比天王星更频繁。我们的结果可以解释冰巨头中观察到的云的零星性,并有助于指导未来的观察结果,以测试这项工作的结论。
摘要:多孔介质中的自然对流代表了一种基本的运输现象,其在工程和自然系统中具有广泛的应用。这项全面的综述研究了包含嵌入物体的正方形外壳内的流体流,传热和多孔结构之间的复杂相互作用。通过分析最近的理论发展,数值研究和实验研究,本文提供了有关通过多孔培养基增强传热增强的机制的见解。特别注意几何配置,材料特性和操作条件对系统性能的影响。此处介绍的发现对热管理系统,地热应用和储能技术的设计和优化具有重要意义。KEYWORDS: Natural convection, Porous media, Heat transfer, Darcy flow, Computational fluid dynamics, Square enclosure, Thermal transport, Buoyancy-driven flow, Heat exchangers, Numerical simulation, Rayleigh number, Nusselt number, Thermal optimization, Geothermal systems, Energy storage, Embedded objects, Isotherm analysis, Streamline visualization, Finite volume method, Heat transfer enhancement I.引言1.1背景和动机多孔介质中自然对流的研究已成为研究的关键领域,因为它在众多工程应用和自然现象中的基本作用。从地热能提取到电子冷却系统,浮力驱动的流动结构的原理继续塑造技术进步。本综述旨在综合该领域的当前理解和最新发展,特别强调涉及带有嵌入式对象的正方形外壳的应用。1.2历史发展多孔媒体对自然对流的调查可以追溯到亨利·达西(Henry Darcy)在19世纪的开创性作品。Forchheimer,Brinkman等研究人员的后续发展已建立了通过多孔材料分析流量的理论框架。近几十年来计算方法的整合已大大提高了我们对这些复杂系统的理解。1.3 Applications and Significance The principles of natural convection in porous media find applications across diverse fields: • Geothermal energy systems and underground heat storage • Environmental remediation and groundwater flow • Heat exchangers and thermal management systems • Nuclear waste disposal • Solar energy collectors • Building thermal insulation • Chemical reactors and process equipment
对流在各种天然和人为的过程中起着至关重要的作用,从而可以通过流体运动有效地传热。本综合指南提供了对流的可访问概述,其中包含实践示例,以说明其原理。,它是寻求阐明这一基本科学概念的教育工作者的宝贵资源。引人入胜且信息丰富,该指南非常适合增强对热动态的理解。对流涉及通过流体(液体或气体)的移动加热的转移,因为加热颗粒会上升,而较冷的颗粒下沉,从而产生圆形流动。这个过程对于理解自然现象和技术应用至关重要,这是物理,气象学和工程学的关键概念。对流的一个经典例子是在炉子上加热水,热水升至表面,冷水沉入底部,形成连续的循环,从而有效地在整个水中转移热量。对流传热的公式可以表示为q = haΔt,强调了诸如传热速率,对流传热系数,表面积和温度差等因素的重要性。这22个对流示例的汇编展示了从日常家庭活动到大规模环境模式的不同环境中的基本过程。冷却和冷凝时,温暖的空气会升起,形成云和降水。同样,随着热量从其表面散发的,一杯咖啡会冷却,而森林通过吸收热量并引起空气运动来调节气候。从沸水到洋流,大气循环,房屋中的散热器,热气球,海风,地球的披风对流,加热汤,熔融冰,熔岩灯,太阳能电池板,冰箱线圈,汽车辐射器和空调,每个例子都在行动中表明了暴力。在烤箱中,热空气循环均匀地煮食物,就像间歇泉爆发地下水被地热能加热一样。板块构造是由于地球核心的热量引起的,导致构造板的运动。房间风扇循环空气以调节室温,人体血液循环通过对流调节体温。对流不仅限于科学概念;它在我们的日常经历中起着作用。示例包括在炉灶上烹饪,洗热水淋浴,使用烤面包机,地板加热系统以及在生产线上晾干衣服。在现实情况下,对流冷却笔记本电脑,铁衣,在建筑物中提供自然通风,加热茶水和使用壁炉。对流还塑造大气现象,例如陆地和海风,云层,季风风,飓风地层以及山和山谷的微风。通过外部手段(例如风扇或泵)运动在工程,气象学和环境研究等各个领域都起着至关重要的作用。了解这些类型对于设计过程和系统至关重要。例子包括在沸水中的自然对流,供暖,海洋电流,冰箱中的空气循环以及风形成。在极端情况下,这些事件可能导致严重的雷暴,甚至龙卷风。对流还可以通过流体中分子的质量运动有效地传输热量,这使得在许多应用中至关重要。对流在塑造天气模式和影响日常生活中起着关键作用,从汽车冷却系统到工业冷却塔,太阳能热水板,地热加热系统,散热器加热器和冷凝器盘绕冰箱的冰箱。认识到对流的机制和示例强调了其在教育和实际情况下的重要性。当热量通过较热的材料与较冷的材料配对的较热材料的上升,因此会发生对流。这种现象涉及质量在流体中的运动,通常导致气象学的向上方向和地质地壳下地壳下方的慢速物质运动。对流在各种日常生活中起着至关重要的作用,包括开水,散热器操作,蒸杯热茶,冰融化,冷冻食物解冻,强迫对流等等。在气象学中,对流与天气条件(例如对流云和斜纹线条)紧密相关。此外,热空气气球依靠加热的空气升起来航行天空。理解对流的定义为探索其在不同研究领域的各种应用和发生的情况提供了坚实的基础。对流在各种自然和人为的过程中起着至关重要的作用。在热气球中,温度差异引起的浮力会随着热空气被困在里面而提升气球。要下降,其中一些热空气被释放,使较冷的空气进入并减少浮力。该原理也称为堆栈效应或烟囱效应,由于室内和室外空气之间的密度差异,空气进出建筑物。在地质学中,对流电流是地球地幔缓慢运动的原因。 内部的热量通过地幔升起,使其在表面冷却。 此过程驱动板块构造,导致火山形成。 重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。 海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。 在恒星中,对流区域在转移能量中起着至关重要的作用。 等离子体加热时,冷却的血浆下降时会产生循环模式。 对流不限于这些例子;可以在各种人类和自然现象中观察到。 既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。在地质学中,对流电流是地球地幔缓慢运动的原因。内部的热量通过地幔升起,使其在表面冷却。此过程驱动板块构造,导致火山形成。重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。在恒星中,对流区域在转移能量中起着至关重要的作用。等离子体加热时,冷却的血浆下降时会产生循环模式。对流不限于这些例子;可以在各种人类和自然现象中观察到。既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
将神经导航序列导入 Brainlab Curve-100 工作站后,在立体定向引导下精确放置 CED 导管。使用“概览”视图为微创轨迹规划两个入口点,以开发目标复发性肿瘤及其周围神经和血管结构的 3D 模型。将导管固定在 14 French Foley 导管(红色橡胶管)中,然后用 3-0 尼龙(Neurolon)缝线缝合刺伤,并将患者转移并插管至 MRI 套件 [图 1]。通过 MRI 期间钆的释放确认导管位置理想 [图 2]。患者对手术的耐受性良好,术后神经系统完好无损。在神经重症监护室对导管进行密切监测,并按照方案以 0.5 ml/h 的速度输注 MDNA55。
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
摘要:本文对两层的一维传热问题进行了理论分析,其中涉及扩散,对流,内部热量产生或损失,依赖于每一层温度以及由于外部来源而产生的热量产生。此外,还考虑了材料之间界面处的热电阻。感兴趣的情况是数学建模的,使用傅立叶技术发现了显式的分析解决方案,并制定了收敛的有限差异方案以模拟特定情况。该解决方案与先前的结果一致。包括一个数字示例,该示例显示了所获得的结果与问题的物理学之间的连贯性。这项工作中得出的结论扩展了对两层传热的理论理解,也可能有助于改善多层工程系统的热设计。
摘要:本研究通过流函数-涡量公式研究激光诱导对流。具体而言,本文考虑了有限箱上具有滑移边界条件的二维稳态 Boussinesq Navier-Stokes 方程的解。在流函数-涡量变量中引入了一种不动点算法,然后证明了小激光振幅的稳态解的存在性。通过该分析,证明了无量纲流体参数与保证存在的激光振幅最小上界之间的渐近关系,这与在有限差分格式中实现该算法的数值结果一致。研究结果表明,当 Re ≫ Pe 时,激光振幅的上限按 O ( Re − 2 Pe − 1 Ri − 1 ) 缩放,当 Pe ≫ Re 时,按 O ( Re − 1 Pe − 2 Ri − 1 ) 缩放。这些结果表明,稳定解的存在在很大程度上取决于雷诺数 (Re) 和佩克莱特数 (Pe) 的大小,正如先前的研究指出的那样。稳定解的模拟表明存在对称涡环,这与文献中描述的实验结果一致。从这些结果出发,讨论了激光传播模拟中热晕的相关含义。
温带子纳普的抽象大气表征是系外行星科学的新边界,最近可能对海学世界k2-18 b进行了JWST观察。鉴于亚北极脉冲状态(包括潜在的可居住行星)的广泛条件,大气过程的准确建模对于解释高精度光谱数据至关重要。值得注意的是,对流是一个重要的过程,可以在跨新持久条件下以不同的模式运行。对流在高凝结质量分数(非涂抹大气)或较轻的背景气体(例如在H 2-富有的气氛中的水对流,在后一种情况下可能会弱得多,甚至可以完全关闭。我们提出了一种新的质量升华方案,该方案可以捕获这些变化并在3D常规循环模型(GCM)中使用的广泛参数空间模拟对流。我们验证了两种代表性案例的方案,一种陆地样的气氛和微型新闻氛围。在陆地案例中,考虑到具有地球风格的trappist-1e,该模型在类似地球的对流案例中与地面调节模型几乎相同。在小型新持续情况下,考虑了K2-18 B的批量特性,并假设具有深H2的大气,我们证明了该方案的能力,可以重现非遵循对流。我们发现在大于0.3 bar的压力下发生的对流,动力学结构显示出高纬度的前列喷射。我们的对流方案将有助于对各种外部大气的3D气候建模,并能够进一步探索温带的亚本次大气。