摘要基于插入电极材料的锂离子电池的能量密度已达到其上限,这使得满足对高能存储系统需求不断增长的挑战。基于硫,有机硫化物等转化反应的电极材料,涉及破裂和化学键改革的氧气可以提供更高的特定能力和能量密度。此外,它们通常由丰富的元素组成,使其可再生。尽管他们具有上述利益,但对于实际应用而言,他们面临许多挑战。例如,硫和分子有机硫化物的循环产物可以溶于液体电解质,从而导致穿梭效应和大量容量损失。氧的排放产物为Li 2 O 2,这可能导致电解质的高电荷过电势和分解。在这篇评论中,我们概述了当前改善锂硫,锂,有机硫化物和锂氧气电池的性能的策略。首先,我们总结了克服硫和有机硫化物阴极面临的问题的努力,以及提高有机硫化物能力的策略。然后,我们介绍了锂氧气电池中催化剂的最新研究进度。最后,我们总结并提供了电极材料转换的前景。
多代能源系统的最佳管理是不断增长的能源需求所面临的挑战之一。为了解决这一紧迫问题,本文提出了一种确定多代能源系统最佳调度策略的方法。所谓的分时电价是基于时间的主要需求响应程序之一,它允许将关键负载从一个时间间隔转移到另一个时间间隔(例如,将电力使用转移到需求较低的一天中价格较低的时段)。因此,本文采用分时电价来增加多代能源系统管理的灵活性,从而优化能源生产与用户需求之间的相互作用。本文的目标是最小化一次能源消耗或运营成本。无论考虑什么目标函数,都可以通过同时在两个层面上采取行动来实现目标,即优化需求响应程序和确定多代能源系统最有利的管理策略。采用混合整数线性规划算法来确定最优策略。案例研究通过真实世界的负载曲线,以一小时为时间步长考虑了全年的运营情况。所提出的方法既可以节省一次能源(超过 1%),又可以降低运营成本(超过 8%)。所提出的方法表明,在能源调度的最佳策略中实施需求响应计划,既可以节省一次能源,又可以降低运营成本(相对于基线情景,即无负载转移)。在负载转移程度较高的情景中,一次能源消耗和运营成本的降低程度更高(本文中为每日电能峰值的 30%)。
风能和太阳能等可变可再生电力占比较大的电力系统需要在发电和需求方面都具有很高的灵活性。区域供热系统内的热泵和热电联产装置以及热储存器之前已被研究过,因为它们有可能提高能源系统的灵活性。当使用这些技术进行电力平衡时,它们必须以非标准方式运行,并切换优先顺序。本研究假设一个住宅区可以形成一个本地运营的实体,即虚拟发电厂,为国家电力系统提供电力平衡服务。该假设通过瑞典的一个案例研究进行了检验,其中热电联产装置、热泵、本地供热系统和热储存器构成了本地实体。对系统中的能量平衡进行了模拟,并优化了储存大小。结果表明,系统中所有的电力盈余都被热泵消耗。热电联产装置覆盖了 43% 的年负荷和 21% 的电力峰值负荷。结论是,跨季节热存储对于系统的灵活性至关重要。此外,如果将大量的电力盈余转化为热能并存储起来,会限制虚拟发电厂在后期利用热电联产装置进行电力平衡的能力。尽管如此,本地虚拟发电厂可以通过向电力系统提供电力平衡服务来提高灵活性。
在可再生能源 (RES) 大量渗透的情况下,利用电转气 (PtG) 技术可以正确支持配电系统运行。本文讨论了 PtG 运行对电力配电系统的影响。我们创建了一种新型 PtG 工厂模型,以代表整个过程链并与网络计算兼容。我们根据在实际工厂收集的测量数据,定义并验证了模型结构及其相应参数。然后,我们在分别代表乡村和半城市环境的两个网络模型上模拟了 PtG 对配电系统的影响。我们通过定义一组包含由 RES 工厂放置引起的配电网危急情况的案例来进行测试。引入 PtG 的目的是减少反向功率流,以及减少配电系统中的过流和过压问题。年度模拟结果显示,与基准情况相比,反向功率流大幅减少(从 78% 减少到 100%),并缓解(甚至解决)了网络的过流和过压问题。这些结果表明,PtG 是保证向脱碳能源系统平稳过渡的可能解决方案。PtG 电厂的容量系数在很大程度上取决于网络拓扑、RES 渗透率、PtG 电厂的数量及其规模。从测试案例来看,农村网络(其中最小容量系数约为 50%)的性能优于半城市网络(其中容量系数值介于 21% 和 60% 之间)。
制造更清洁和更多经济车辆的方向之一是采用电动汽车概念。因此,内燃机Nissan Micra车辆被转换为电池电动汽车。重新设计了汽车的动力列车,以使用直流电动机来代替现有的内燃机,并给出了普通汽车的齿轮比。通过考虑滚动,梯度和空气动力学电阻来确定电动机的功率额定值,这使得总的拖动努力为12190.84 N.然后确定设计的功率额定值为8 kW,并使用此值来选择提供所需电流的电池数量,以达到运营的充分范围。为了平衡汽车的重量,电池架位于重心后面,使开发的车辆具有中性的转向特性。在安装电动机,逆变器和电池后,电池通过可变频率驱动器与AC电机和电位器平行于逆变器,并平行于逆变器。然后对车辆进行评估,并产生的电压能够以6.24 m/s的速度移动车辆,并且获得的最大频率为五十兆赫(50 MHz)。关键字:电动汽车,电池,逆变器,齿轮比,滚动阻力,梯度阻力,空气动力阻力。版权所有©2024作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。
锂离子电池存储已成为各种能源系统的有前途的解决方案。但是,复杂的退化行为,相对较短的寿命,高资本和运营成本以及电力市场波动是挑战其实际生存能力的关键因素。因此,为了确保锂离子电池在现实生活中的持续盈利能力,考虑到关键影响因素的智能和最佳管理策略对于实现有效的电池利用至关重要。本研究提出了两天的电池行为感知操作计划策略,以最大限度地提高盈利能力和寿命,并使用动态电力定价来实现住宅电网连接应用。每个场景采用独特的方法来做出最佳决策,以实现最佳电池利用。第一种方案通过将收入率在三个收费/放电率(高,中,低)下优先级优化短期盈利能力,将每日收费和放电时间视为决策变量。相反,第二种情况提出了一种智能策略,能够在广泛的变量上做出明智的决策,以同时最大化收入并最大程度地减少退化成本,从而确保短期和长期利润能力。决策变量包括每个特定日期的周期频率,每个周期充电和排放的时间以及持续时间。为了确保有效的长期评估,两种情况都可以准确估计电池性能,日历和周期性降解,剩余的寿命以及在实际操作条件下的内部状态,直到电池达到其寿命末期标准为止。使用各种指标对情景进行经济评估。此外,还检查了电池价格和尺寸对优化的影响。关键发现表明,在第一组方案中,电荷/放电率低的策略最有效地扩展了电池寿命,估计为14。8年。但是,事实证明它是最少的利润,导致负利润为-3欧元 /千瓦时 /年。另一方面,尽管电池寿命较短,估计分别为10.1岁和13。6年,但较高和中度充电/放电的策略的正利润为8.3欧元/千瓦时/年和9.2欧元/千瓦时/年。此外,从回报的角度来看,快速收费/放电能力的策略导致回报期比中等利率策略短1.5岁。发现的结果表明,第一组方案限制了该战略在实现可持续性和盈利能力方面的灵活性。相比之下,第二种情况获得了令人印象深刻的利润(18欧元/年),最短的投资回收期(7。5年),值得称赞的寿命(12。5年),与以收入为中心的相反的情况相反,强调了收入增长和降级的利润的最佳平衡和推动利润的最佳平衡的重要性。这些发现为决策者提供了宝贵的见解,实现了明智的战略选择和有效的解决方案。