Paul Morandi,Valerie Flaud,Sophie Tingry,David Cornu,Yaovi Holade。 tart酸调节具有可调性能的基于偶有的材料的晚期合成,用于过氧化氢的电催化产生。 材料化学杂志A,2020,8(36),第18840-18855页。 10.1039/d0ta06466a。 hal-02963825Paul Morandi,Valerie Flaud,Sophie Tingry,David Cornu,Yaovi Holade。tart酸调节具有可调性能的基于偶有的材料的晚期合成,用于过氧化氢的电催化产生。材料化学杂志A,2020,8(36),第18840-18855页。10.1039/d0ta06466a。hal-02963825
图1冠状组织学切片(Kluver Barrera染色)和Ex Vivo 0.2×0.2×0.2×0.2 mm 3 MRI在海马头(A,B),身体(C,D)和尾部(E,G)的同一主题中。组织学部分中的黑线划分了子场之间的细胞结构边界,该专家以全0.5×0.5μm2分辨率分析数字组织学部分的专家追踪。绿色箭头指向辐射分子(SRLM)层,在MRI中显得不高。请注意,Cornu氨和下调的宽度取决于SLRM的位置,SLRM的位置是分割子场(黄线)的关键地标。此外,在离体MRI上,可以看到牙槽(外部低位带,红色箭头),这有助于划定海马的外边界,尤其是其数字(白色星号)。ca,Cornu Ammonis,sub,subiculum(包括前和副副总统),DG,Dentate Gyrus
自 1994 年以来,SSNERR 一直与技术顾问合作,修复南斯劳温彻斯特溪沿岸的潮汐湿地和非潮汐湿地,这些湿地历史上曾被改造用于支持农业活动(例如 Cornu & Sadro,2002 年)。作为温彻斯特潮汐地修复项目 (WTRP) 的一部分,SSNERR 已经修复了大约 55 英亩的湿地(例如 Cornu,2005 年),改善了整个温彻斯特系统的河口鲑鱼栖息地(例如 Miller & Sadro,2003 年),并测试了恢复失去的沿海湿地栖息地功能和减少的生态系统服务的方法。沃森溪流域修复项目是 WTRP 地区最后一个需要进行场地规模修复的地点。沃森溪项目区(图 1)在 SSNERR 2009 年上游流域修复行动计划和 2017-2022 年管理计划中被确定为高优先级修复区。 SSNERR 于 2012 年获得了刚刚收获的 Wasson Creek 排水系统的上游部分,这为 SSNERR 提供了一个机会,通过展示一种整体的“从山脊到河口”的海岸修复方法,继续其创新的修复方法。
海马是一个复杂的大脑结构,该结构由每个具有不同细胞组织的子场组成。虽然海马子场的体积显示与推理和记忆功能相关的年龄相关变化,但每个子场内的细胞组织与这些功能在整个开发过程中与这些功能相关的程度尚未得到充分了解。我们采用了一种明确的模型测试方法来表征组织微结构的开发及其与2个推理任务的性能的关系,一种需要内存(基于内存的推论),而一种仅需要可感知的可用信息(基于感知的推论)。我们发现,每个子场就其细胞组织都与年龄建立了独特的关系。虽然亚面(子)与年龄显示线性关系,但齿状回(DG),Cornu Ammonis Field 1(Ca1)和Cornu Ammonis子领域2和3(组合; CA2/3)显示了与CA2/3中性别相互作用的非线性轨迹。我们发现DG与基于内存的推理性能有关,并且SUB与基于感知的推理有关。两种关系都与年龄相互作用。结果与海马子场内的细胞组织可能经历不同的发展轨迹,这些轨迹支持整个开发过程中的推论和记忆表现。
Romina Marone 1.2 * 、Emmanuelle Landmann 1.2 * 、Anna Devaux 1.2 * 、Rosalba Lepore 1,2,3,4 * 、Denis Seyres 1.2 、Jessica Zuin 1.2 、Thomas Burgold 1.2 、Corinne Engdahl 1.2 、Giuseppina Capoferri 1.2 、Alessandro Dell ' Aglio 1.2 、Cl´ement Larrue 5 、Federico Simonetta 6.7 、Julia Rositzka 8.9 、Manuel Rhiel 8.9 、Geoffroy Andrieux 10 、Danielle N. Gallagher 11 Markus S. Schr oder 11,Am´elie Wiederkehr 4,Alessandro Sinopoli 4,Valentin Do Sacramento 3,Anna Haydn 4,Laura Garcia-Prat 3,Christopher 4,Christopher 4 ,14,Matthew Porteus 12,J´er ˆ OME Tamburini 7,Jacob E. Corn 11,Toni Cathomen 8,9,Tatjana I. Cornu 8,9,Stefanie Urlinger 3,4 ,以及 Lukas T. Jeker 1,2
碳水化合物(或聚糖)在从储能到病原体逃避的生物系统中起着至关重要的作用。然而,特定的聚糖对诸如情绪和认知之类的大脑功能的贡献在很大程度上是未知的。在这里,我们表明硫酸软骨素(CS)调节小鼠Ca2(Cornu Ammonis 2)海马区域中的脑膜内神经元网(PNN)和兴奋性突触,这是社交记忆至关重要的。成年小鼠中CS 4 -O硫化的消融导致PNN畸形,焦虑升高和社交记忆受损。逆转了PNN异常或补充4 -O硫化的调节恢复了正常的情绪和社交认知。这些发现确定了软骨素4- O-硫化在高阶脑功能中的作用,并提出了一种潜在的策略,以解决具有社会认知功能障碍的神经系统疾病。
我们目前对阿尔茨海默氏病(AD)早期颞叶(MTL)内tau神经薄缠结(NFT)的传播和神经退行性作用的理解受到限制,这受到混淆的非AD病理学和二维(2-D)的常规历史学性质的存在。Here, we combine ex vivo MRI and serial his- tological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high- resolution, ex vivo atlas with cytoarchitecturally-de fi ned subregion labels, that can be used to inform future in vivo neuroimaging studies.平均地图在NFT分布中显示出海报梯度的明显前方,并且具有最高水平的NFT的精确的空间模式,不仅在跨肾上腺域内发现,而且还发现了Cornu氨(CA1)子场。此外,我们确定了颗粒状MTL区域,其中神经退行性的测量可能与NFT相关,因此作为早期AD生物标志物可能更敏感。
背景:认知障碍是精神分裂症的常见特征,抗精神病药物无法缓解。婆罗米俗称认知增强剂,可能是精神分裂症认知缺陷治疗的新前沿。目的:研究婆罗米对亚慢性苯环利定 (PCP) 精神分裂症大鼠模型中认知缺陷和大脑谷氨酸/N-甲基-D-天冬氨酸 (NMDA) 受体密度的减弱作用。材料和方法:给大鼠施用 PCP 或载体。PCP 组一半用婆罗米治疗。从新物体识别任务中获得代表认知能力的辨别率 (DR)。使用免疫组织化学测量前额皮质、纹状体、海马 1 至 3 角区 (CA1-3) 和齿状回 (DG) 中的 NMDA 免疫密度。结果:与对照组相比,PCP 组的 DR 显著降低。同时,前额皮质和 CA1-3 中的 NMDA 上调也随之发生,但纹状体和 DG 中没有。与单独使用 PCP 相比,使用婆罗米的 PCP 显著提高了 DR 评分。同时,前额皮质和 CA1-3 中的 NMDA 免疫密度也显著降低。使用婆罗米的 PCP 与对照组之间,大脑 NMDA 免疫密度没有显著差异。结论:PCP 给药大鼠的认知缺陷是由前额皮质和 CA1-3 中的 NMDA 上调介导的。有趣的是,婆罗米可以通过将这些大脑区域的 NMDA 密度降低至正常水平来恢复这种认知缺陷。
海马是一个大脑区域,具有结构性重组或神经层状城市的能力。它可以快速修改现有的神经回路,甚至可以通过神经发生过程创建完全新颖的神经联系[1]。具体而言,海马的染色回(DG)以其持续生成新神经元的能力而闻名[2]。重要的是,海马的神经遗传潜力似乎对外部刺激具有很高的反应。例如,海马神经发生和神经塑性过程是响应体育活动的促进[3],而压力,酒精和睡眠剥夺会损害它们[4,5]。此外,对老年人的研究表明,海马神经塑性和海马体积的显着降低,与年龄相关的认知下降有关[6,7]。海马体积损失可以在认知障碍前几年[8],而在康复氨基征领域1(CA1)的老年人中,患有轻度认知障碍(MCI)严重损失,预测海马亚领域预测朝着阿尔茨海默氏症的痴呆症的进展[9-13]。已经提出,海马神经遗传学和神经塑性电位受到几种神经营养和炎症标记的调节[14]。在老年人中,一种低级炎症状态,被称为“炎症” [15],被认为会损害海马可塑性[14,16]。随着整个体内炎症,旧细胞和受损细胞的炎症开始释放出炎性细胞因子,例如白介素6(IL-6),进入血液流。这些衰老细胞的数量随着衰老而逐渐增加[17],导致
新型基因编辑技术中使用的核酸酶主要有四类,分别是:巨核酸酶、锌指核酸酶(ZFN);转录激活因子样效应核酸酶 (TALEN);以及成簇的规律间隔的短回文重复序列 (CRISPR) 相关 (Cas) (Gaj 等人,2016)。巨核酸酶是一种在特定区域切割 DNA 的内切核酸酶,可识别大于 12 bp(碱基对)的序列。 LAGLIDADG 巨核酸酶家族包含 I-CreI 和 I-SceI,它们是第一种用于基因编辑的酶。由于只有少数氨基酸残基与核苷酸接触,这些酶被设计用于在特定位点切割基因(Paques;Duchateau,2007)。此外,ZFN 是一种人工酶,也是最早用于诱导植物靶向突变的酶之一。这些酶是由锌指型结构域和限制性酶 Fok I 的结构域融合产生的。与基因编辑中使用的其他核酸酶一样,ZFN 会在需要修复的 DNA 特定位置插入双链断裂 (DSB),并且由于修复机制中的故障,可能会出现突变 (Carroll, 2011)。使用该系统的主要问题是这种酶的高毒性,以及它会产生许多脱靶效应(Cornu et al., 2008; Ramirez et al., 2008),这会损害不应改变功能的基因的功能(Zhang et al., 2015)。随着版本的合并