免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
Th 核中的低能同质异能态 (eV) 已引起人们的广泛兴趣,因为它可以用于设计超精密核钟[1-4]、光学范围的核激光器[5,6]和 VUV 范围的核发光二极管[7],也可以用于研究许多不寻常的过程:Th 在激光辐射下通过电子桥处的电子壳层激发和衰变[8-15],通过边界条件 [16]或化学环境 [17,18]控制同质异能能级衰变,Th 异构体的衰变[19]及其伴随的轫致辐射[20],精细结构常数和强相互作用参数变化的相对效应[21-23],长时间内衰变定律的指数性检验[24],等等。
人们对 229 Th 核中低能级同质异能态 3 / 2 + ( E < 10 eV)产生了浓厚的兴趣,因为可以设计超精密核钟 [1, 2, 3, 4]、光学范围的核激光器 [5, 6] 和 VUV 范围的核发光二极管 [7],以及研究许多不寻常的过程:激光辐射通过电子桥处的电子壳层激发和衰变 229 m Th [8, 9, 10, 11, 12, 13, 14, 15],通过边界条件 [16] 或化学环境 [17, 18] 控制同质异能能级 γ 衰变,229 m Th 异构体的 α 衰变 [19] 及其伴随的轫致辐射 [20],精细结构常数和强相互作用参数变化的相对影响 [21, 22, 23]、长时间衰变定律的指数性检验 [24] 等。229 m Th 同质异能态的激发能量是所有已知原子核中最低的。根据最新数据 [25],它的能量 E is 为 8.19±0.12 eV。这个结果与文献 [26] 中获得的 E is = 8.28±0.17 eV 值接近,也与文献 [27] 测量的 E is = 8.10±0.17 eV 和文献 [28] 中的 E is = 7.8±0.5 eV 接近。在此之前,在 1990 年至 2007 年的相当长的一段时间内,人们认为 E is < 5 eV [29, 30]。目前,233 U 的 α 衰变实际上是获得 229 m Th 异构体的唯一方法。目前无法通过激光辐射有效激发 229 m Th,因为这需要比现在更精确地了解跃迁能量。因此,在工作 [7] 中,提出通过非弹性电子散射激发 229 m Th。事实证明,在束流能量区域 E ≈ 10 eV 内,激发截面达到 10 − 25 cm 2 的值。如此大的截面表明,使用带负电的粒子束获得 229 m Th 的方法是有前途的。作为工作 [7] 的延续,我们在此考虑低能μ子与 229 Th 核的非弹性散射过程。此类工作的先决条件可能是以下考虑。在 Born 近似中,核激发到能量为 E 的同质异能态的截面在文献 [31] 中通过分析获得,在文献 [32] 中通过分析获得。磁偶极子 ( M 1) 跃迁和电四极子 ( E 2) 跃迁的截面形式为 [31, 32]
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要 纠缠量子粒子是纳米尺度上携带量子信息的一种有吸引力的选择,对其中某个粒子的操作会瞬间影响另一个纠缠粒子的状态。然而,在传统的时间相关量子传输模拟方法中,完整描述纠缠需要大量的计算工作,几乎是无法承受的。考虑到电子,分析其纠缠的一种方法是通过 Wigner 形式对库仑相互作用进行建模。在本文中,我们通过采用合理的近似来降低两个相互作用电子时间演化的计算复杂度。具体而言,我们用局部静电场代替电子-电子相互作用的 Wigner 势,该势是通过势的谱分解引入的。证明了对于电子-电子系统的某些特定配置,引入的近似是可行的。我们还分析了纯度,即量子态的最大相干性,相应的分析表明,引入的局部近似可以很好地解释由库仑相互作用引起的纠缠。
摘要 现代量子设备在通信、计量或显微镜领域的性能依赖于量子-经典相互作用,这种相互作用通常用退相干理论来描述。尽管长相干时间在量子电子学中具有很高的相关性,但由库仑力介导的退相干机制尚不清楚,而且存在几种相互竞争的理论模型。在这里,我们介绍了一项实验研究,研究了双棱镜电子干涉仪中靠近半导体和金属表面的叠加态自由电子的库仑诱导退相干。退相干是通过不同光束路径分离、表面距离和电导率下的对比度损失来确定的。为了阐明当前的文献讨论,将四种理论模型与我们的数据进行了比较。我们可以排除其中三种,并与基于宏观量子电动力学的理论很好地一致。结果将有助于在设计新型量子仪器时确定和最小化特定的退相干通道。
摘要 建立了非均匀应力场下隧洞开挖力学模型,提出了一种同时考虑黏聚力和内摩擦角弱化的应变软化模型,推导了峰后区半径、应力与位移的解析解。以桃园煤矿某隧洞为工程实例,确定了隧洞峰后区半径、地表位移和应力分布情况,讨论了平竖应力比、中间主应力、残余黏聚力、残余内摩擦角对隧洞变形的影响。研究结果表明:由于应力场不均匀,隧洞周边峰后区半径和应力分布随方向呈变化趋势;考虑中间主应力时,隧洞峰后区半径和地表位移较大;残余黏聚力和内摩擦角越大,隧洞峰后区半径和地表位移越小。
物理 51 期中考试样本 #1 (23 分) 由 Todd Sauke 提出 问题 #1。点电荷 Q = -800 nC(纳库仑)和两个未知点电荷 q 1 和 q 2 的放置位置如右图所示。由于电荷 Q、q 1 和 q 2 ,原点 O 处的电场等于零。我们要确定电荷 q 1 和 q 2 的值。原点处的电场矢量有两个分量(x 和 y)。由于原点处的电场为零,所以 x 和 y 分量都为零。我们可以分别考虑 x 和 y 分量。请记住,由于 q 1 引起的原点处电场的 y 分量为零,因为它在 x 轴上。由于电荷 Q 引起的原点处 E 场的 y 分量是多少?(使用三角函数求得 y 分量。)
在半导体中情况有所不同。在反转层或侵蚀的二维电子气体中,费米波长可以是大的50 nm。这是两个比金属大的数量级,并且在当今的微生物技术范围内。谐振隧道研究已在二维电子气体的子微米大小的区域中构成了能量水平的ae> q.l MEV,并通过GAAS-(AL,GA)的栅极电极作为异质结构固定在静电上。7“ 9对于典型电容C£10〜15 f,在毫米kelvin温度下,一个然后häsE2 /c〜δε ^> kt。< /div。在这种制度中,库仑阻止的经典理论将被一个理论代替,其中包括能量谱的离散性的影响。这是本文中解决的问题。