在我们追求了解电子 - 波耦合(EPC)及其对材料特性的影响时,我们深入研究了Eliashberg功能在管理电子自我能源方面所起的复杂作用。通过对近似此功能的量身定制的多项式模型的细致评估,我们发现了对声子相互作用如何精心修改电子能带的深刻见解。采用数值计算,我们精心阐明了电子自能的真实和虚构方面,对于理解各种材料的EPC效应至关重要。研究单层石墨烯内的超导性及其与各种掺杂物质的相互作用,我们的研究使我们确定了准确捕获EPC行为的最佳多项式模型,从而对预测超导材料中的关键温度具有无价的意义。扩展模型中的参数使我们能够预测本研究中未探索的高阶配置的自能量模型的变化。我们选择了从n = 1到10的多项式跨度度的选择,n = 2(debye)的疗效是最现实和准确的模型,紧随其后的是n = 1,尽管偶尔在特定材料中观察到偶尔会发生偏差。这些差异通常源于噪声模型的错误和参数近似。我们的综合方法超过了传统的Kramer-Kronig转换在评估电子 - phonon相互作用时。向前看,尽管同时调整多个输入参数的挑战,但将多个模型应用于Eliashberg函数图仍具有提高准确性的巨大希望。将数值建模与实验数据的集成形成了强大的框架,从而增强了对设备未来制造至关重要的材料特性的预测和微调。
光线互动在我们的日常生活中非常重要,因为他们对我们如何看待周围的世界负责。他们还负责为什么天空是蓝色的,以及为什么在太阳下方会感到温暖。轻度 - 物质相互作用是指光颗粒与材料原子中存在的电子相互作用的过程。与我们在通常的生活中观察到的相互作用类型不同,例如球碰撞,轻度互动是一种纯粹的量子机械现象。这是由于能源离散的结果,即量子力学中的能量水平。可以通过想象一个我们用大理石填充的空罐子来理解这一点。在这种情况下,每个大理石代表一个能量的一个单位,一个量子。去除或添加大理石到罐子中等同于从/向我们的粒子中添加或添加能量。在20世纪中叶,发现光颗粒(光子)与这些量子的能量相对应。通常,光 - 摩擦相互作用涉及通过两个过程在光子和电子之间的能量交换:吸收和发射。通过吸收光子,当电子转变为较高的能级(向罐子中添加大理石)时,就会发生吸收,而发射涉及电子返回到较低的能级(从罐子中去除大理石)并以光子的形式释放其能量。这些过程导致光耦合。
在温暖云中的抽象气溶胶相互作用(ACI)是历史期间有效辐射强迫(ERF)的不确定性的主要来源,并且通过扩展为推断的气候灵敏度。由于ACI(ERFACI)引起的ERF由云的强迫组成,这是由于云微物理学的变化和对微物理学的云调整。在这里,我们使用CAM6中托管的扰动参数集合(PPE)来检查驱动ERFACI的过程。对PPE的观察性约束会导致云微物理学和巨摩托学对人为气溶胶的响应的重大限制,但仅对Erfaci的限制最小。对PPE中的云和辐射过程的检查揭示了降水效率和辐射性敏感性的相互作用来缓冲Erfaci。
摘要 — 在电路设计领域,与传统的基于晶体管的逻辑相比,场耦合纳米技术 (FCN) 等新兴技术提供了独特的机会。然而,FCN 也带来了一个关键问题:线路交叉对电路稳健性的重大影响。这些交叉要么无法实现,要么会严重降低信号完整性,对高效电路设计造成重大障碍。为了应对这一挑战,我们提出了一种新方法,专注于减少 FCN 电路中的线路交叉。我们的方法引入了 LUT 映射和分解的组合,旨在在逻辑综合过程中产生有利的网络结构,以最大限度地减少线路交叉。这个新的优化指标优先于节点数和关键路径长度,以有效应对这一挑战。通过实证评估,我们证明了所提出方法的有效性,可将线路交叉的第一次近似值降低 41%。69%。这项研究为推进新兴电路技术中的线路交叉优化策略做出了重大贡献,为后 CMOS 逻辑时代更可靠、更高效的设计铺平了道路。
定向耦合器(DCS)在具有多功能应用(例如电源拆分,调制和波长施用)多路复用等多功能应用中起关键作用。然而,由于分散而引起的固有波长依赖性对使用DC构成了带宽的限制。尤其是50:50 DC仅在一个波长下实现此比率。这种意外的耦合变化显着降低了许多硅光子应用的性能。在寻求实现宽带50:50 DC时,已经探索了各种计划。值得注意的是,已经提出了基于模式进化的绝热DC,其中输入波导中的光在DC中的均匀或奇数模式在50:50分裂[1]中均具有均匀或奇数。绝热DC是固有的较长设备,可能会超过300 µm,并且经常表现出高度损失。另一种设计策略采用了非对称DC,利用不同宽度的波导来降低波长依赖性。尽管具有潜力,但这些设计对线宽变化高度敏感,并且制造不耐症[2]。实现宽带功能和制造公差在硅光子学中构成了重大挑战,这主要是由于纳米级维度和高指数对比度[3]。最近,弯曲的DC(不对称DC的子集)已成为可行的解决方案[4]。他们提供宽带耦合,这是一个相对紧凑的足迹,同时保持较高的制造耐受性。通过弯曲波导的不对称引入消除了对不同波导宽度的需求,因此解决了在具有不对称波导宽度的DC中观察到的制造灵敏度。由于不对称性,不再是不可能的,与在对称的直接直流中耦合相反,这会导致非单调耦合与波长,并且可以设计为实现最大值
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
通过强光 - 膜相互作用产生激子 - 极性的产生代表了量子现象的新兴平台。基于胶体纳米晶体的极化系统的一个重大挑战是能够在室温下以高保真度操作。在这里,我们通过与Fabry-Pérot光腔的CDSE纳米片(NPL)偶联(NPLS)偶联,演示了室温的生成量 - 极光量。量子古典计算准确地预测了许多黑暗状态激子与光学允许的极化状态之间的复杂动力学,包括实验观察到的较低的北极星pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Pho-To-To-To-Pho-To-To-To-Pho-To-To-Pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Plo-To-To-Palliminencence浓度的浓度在较高的平面量较高时,随着蛀牙的越来越较大,较高的平面矩处的浓度。在5 K处测得的Rabi分裂与300 K时相似,从而验证了该极化系统的温度无关操作的可行性。总体而言,这些结果表明,CDSE NPL是促进室温量子技术发展的绝佳材料。
样品制作工艺从对 < 100 > 表面取向的电子级金刚石衬底 (元素 6) 进行植入前表面处理开始。首先将样品衬底放入湿式 Piranha(H 2 SO 4 (95 %): H 2 O 2 (31 %) 比例为 3:1)无机溶液中,在 80 ◦ C 下清洗 20 分钟,然后通过电感耦合等离子体反应离子蚀刻 (ICP/RIE) Ar/Cl 2 等离子体化学配方进行表面约 5 µ m 蚀刻,以去除衬底表面残留的抛光诱导应变。再进行约 5 µ m ICP/RIE O 2 化学等离子蚀刻,以去除前面蚀刻步骤中残留的氯污染[1]。接下来,将样品在 Piranha 溶液中进行无机清洗(80 ◦ C 下 20 分钟),并注入 Sn 离子(剂量为 1e11 离子/cm 2,能量为 350 keV)。在通过真空退火(1200 ◦ C)激活 SnV 中心之前,进行三酸清洗(比例为 1:1:1,HClO 4(70%):HNO 3(70%):H 2 SO 4(> 99%))1.5 小时,以去除任何残留的有机污染,然后在退火步骤后进行相同的湿式无机清洗程序,以去除在金刚石基材退火步骤中形成的任何表面石墨薄膜层。为了评估 SnV 中心是否成功激活,在悬浮结构纳米制造之前对样品进行表征。波导结构的纳米加工遵循参考文献[2-6]和[1]中开发的基于晶体相关的准各向同性蚀刻底切法的工艺。图S1中显示了该方法的示意图。