我们概述了两种一般的理论技术,用于模拟Polariton量子动力学和光谱,在由Helestein-Tavis-Cummings(HTC)模型Hamiltonian描述的集体耦合方案下。第一个利用了HTC Hamiltonian的稀疏性,这使人们可以将代理北极星汉密尔顿的成本降低到状态矢量的状态数量,而不是二次顺序。第二个正在应用众所周知的Chebyshev系列扩展方法进行量子动力传播,并将它们应用它们模拟HTC系统中的Polariton动力学,从而允许人们使用更大的时间步骤进行繁殖,并且只需要对Palliton Hamiltonian对国家Vectors进行载体的递归操作。这两种理论方法是通用的,可以应用于任何基于轨迹的非绝热量子动力学方法。我们将这两种技术应用于先前开发的lindblad最佳密度矩阵(L -PLDM)方法,以模拟HTC模型系统的线性吸收光谱,均具有不均匀的位点能量能量障碍以及偶极性方向疾病。我们的数值结果与以前的分析和数值工作非常吻合。
高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。
摘要:飞秒内的等离激元激发衰减,将非热(通常称为“热”)载体留在后面,可以注入分子结构中,以触发化学反应,而这些反应否则无法达到一个被称为等离子催化的过程。在这封信中,我们证明了谐振器结构和等离子纳米颗粒之间的强耦合可用于控制等离激元激发能与电荷注入能量之间的光谱重叠。我们的原子描述通过辐射反应潜力,将实时密度功能性理论夫妇自搭与电磁谐振器结构。对谐振器的控制提供了一个额外的旋钮,可用于非侵入性的等离激元催化,在这里超过6倍,并动态地反应催化剂的催化剂是现代催化的新方面。关键字:等离激元催化,强光 - 物质耦合,热载体,偏振化学,局部表面等离子体,密度功能理论
2D半导体可以推动量子科学和技术的进步。但是,它们应该没有任何污染。同样,相邻层及其电子特性的晶体学排序和耦合应具有良好的控制,可调且可扩展。在这里,这些挑战是通过一种新方法来解决的,该方法结合了分子束外延和原位带工程在石墨烯上半导体硒化(GASE)的超高真空中。通过电子差异,扫描探针显微镜和角度分辨的光电子光谱法表明,在层平面中与基础与石墨烯的下层晶格相对的原子研究表明,GASE的原子薄层对齐。GASE/石墨烯异质结构(称为2semgraphene)具有GASE的中心对称性(组对称性D 3D)多晶型物,GASE/Chapeene界面处的电荷偶极子,以及可通过层厚度调谐的带结构。新开发的可伸缩2秒封装用于光学传感器,该传感器利用光活动Gase层和与石墨烯通道的接口处的内置电势。此概念证明具有进一步的进步和设备体系结构,将2semgraphene作为功能构建块。
表面等离子体共振(SPR)是开发传感器平台 - 用于临床诊断,药物发现,食物质量和环境监测应用的关键技术。虽然Prism耦合(Kretschmann)SPR仍然是实验室工作流动的“金色标准”,这是由于更轻松的制造,处理和通过PUT高较高,但其他配置的spr,例如光栅耦合SPR(GC-SPR)和Wave-Guide Mode等SPR尚未实现其技术潜力。这项工作评估了影响GC-SPR性能的技术方面,并回顾了此类平台制造的最新进展。原则上,GC-SPR涉及带有定期光栅的等离子金属纤维的照明,以通过基于差异的相位匹配来激发表面等离子体(SP)。然而,GC-SPR的实际性能受到通过自上而下的光刻技术产生的光栅结构的地形的影响。本综述讨论了在大规模上实现具有均匀特征和周期性的一致的等离子光栅的最新方法,并探讨了等离子体激活和底物材料的选择,以增强性能。该评论还提供了有关不同的GC-SPR测量结果的见解,并强调了机会,其潜在应用是具有转化能力的生物传感器。
线粒体是一个选择性的过程,通过该过程,线粒体受损或功能障碍的线粒体被专门针对细胞降解和去除。它可以防止功能失调的线粒体的积累,否则可以导致细胞应激和疾病,例如神经退行性疾病和某些癌症。泛素化标志着自噬机械的蛋白酶体或溶酶体降解的蛋白质。泛素特异性肽酶30(USP30)已被确定为线粒体的负调节剂。它通过从线粒体表面上的蛋白质中去除泛素标签来抵消泛素化的过程,并防止导致细胞应激的受损或功能障碍的线粒体降解。抑制USP30活性已被证明可以促进线索和管理某些神经退行性疾病的潜在方法。 尽管线粒体和线粒体功能障碍受损与代谢相关的脂肪肝病的发病机理(MAFLD)有关,但对USP30在MAFLD病理生理学或代谢性疾病的病理生理学中的研究仍处于早期阶段。 结果,我们试图彻底评估文献,以确定USP30参与MAFLD的病理生理学,以及调节USP30活动是否可能是管理MAFLD的治疗策略。抑制USP30活性已被证明可以促进线索和管理某些神经退行性疾病的潜在方法。尽管线粒体和线粒体功能障碍受损与代谢相关的脂肪肝病的发病机理(MAFLD)有关,但对USP30在MAFLD病理生理学或代谢性疾病的病理生理学中的研究仍处于早期阶段。结果,我们试图彻底评估文献,以确定USP30参与MAFLD的病理生理学,以及调节USP30活动是否可能是管理MAFLD的治疗策略。
除了库仑相互作用外,电子 - 光子相互作用还是固体中准颗粒的基本相互作用之一。它对于各种物理现象起着重要作用。尤其是在金属中,通过与晶格振动的耦合(例如传输和热力学特性)的晶格振动,对低能电子激发进行了强烈的修饰。电子 - 音波耦合(EPC)还以基本的方式提供了一种有吸引力的电子电子相互作用,它始终存在,在许多金属中,是超导性宏观量子现象的基础电子配对的起源。本讲座解决了金属正常和超导状态中电子偶联的后果。在第2节中,引入了描述耦合电子phonon系统的基本汉密尔顿。在第3节中,仔细观察金属中的正常状态效应,重点是对准颗粒的重新归一化,这可以实验地量化相互作用的强度。第4节致力于声子介导的超导性。首先给出了由声子交换所介绍的电子中有效的吸引力相互作用的推导。然后,我们在某些详细的情况下分析了在强耦合Migdal-Eliashberg理论的背景下,电子 - 音波耦合在超导性中的作用。在第5节中,我们介绍了一种基于密度功能理论的方法来计算电子偶联量,并提出了两个示例,以说明其预测能力。在本章中,仅考虑非磁性状态,并且使用原子单位ℏ= 2 m e = e 2 /2 = 1以及k b = 1。
自动移动机器人在交付,制造,耕作,采矿和太空探索的自动化中起着重要作用。尽管这些机器人在传统上依靠其与GNSS/INS系统的本地化[1],但在室内,室内,屋顶或茂密植被的区域,在发生信号损失的情况下,会出现挑战。为了克服这一限制,已经提出了同时定位和映射(SLAM)[2]方法。猛击通常将其分为光检测和范围(LIDAR)大满贯和视觉猛击,具体取决于所用的主要传感器。LIDAR SLAM在涉及敏捷运动和复杂结构化环境的场景中具有很高的精度和鲁棒性,这是由于其能力直接使用多个射线直接测量对象和传感器之间的距离[3]。但是,由于LiDar SLAM通过匹配每种结构扫描来执行定位,LIDAR的大满贯可以在无结构的场景中退化,例如隧道,庞大的平面和走廊[4]。另一方面,视觉猛击,利用RGB图像的纹理信息可以在无结构环境中起作用,因为它依赖基于纹理的特征,即使在缺乏明确的结构元素的场景中,也可以提取这些特征[5]。然而,视觉大满贯的规模估计有弱点,并且可以在照明条件下快速变化。为了解决LiDAR和Visual Slam的局限性,已经提出了各种LiDAR视觉大满贯方法,这些方法同时整合了LiDar和Visual Sensor的信息[6-8]。这些方法可以有效地处理结构和,因为这些方法大多数都依赖于松散耦合的方式(系统间融合)[6,7],这两个系统中的故障都会导致总体猛击失败。为了解决松散耦合方式的弱点,已经提出了紧密耦合的方法(功能间融合)[8]。
将孔隙度引入铁电陶瓷可以降低有效的介电常数,从而增强直接压电效应产生的开路电压和电能。然而,纵向压电系数的减小(D 33)随着孔隙率的增加,目前限制了可以使用的孔隙率范围。通过将排列的层状孔引入(Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3中,本文在D 33中表现出与其密集的对应物相比,D 33中的22–41%增强。这种独特的高D 33和低介电常数的独特组合导致了明显改善的电压系数(G 33),功能收获(FOM 33)和机电耦合系数(k 2 33)。证明改进特性的基本机制被证明是多孔层状结构内的低缺陷浓度和高内极化场之间的协同作用。这项工作为与传感器,能量收割机和执行器相关的应用的多孔铁电剂设计提供了见解。