分子法技术,包括蛋白质组学,已使关键信号通路阐明了介导大脑和骨组织之间双向通信的关键信号通路。在这里,我们简要摘要研究了研究跨组织细胞通信的骨 - 脑轴的需求。明确的临床和分子证据表明骨骼和脑细胞之间的生物学相互作用和相似性。在这里,我们回顾了目前研究大脑和骨骼疾病的质谱技术,分别重点是神经退行性疾病和骨关节炎/骨质疏松症。在分子水平上进一步研究了蛋白质,神经肽,骨化剂和激素在与骨骼和脑部疾病相关的分子途径中的作用是至关重要的。使用质谱和其他OMIC技术来分析这些跨组织信号传导事件和相互作用将有助于我们更好地了解疾病的进展和合并症,并有可能确定治疗性干预措施的新途径和目标。蛋白质组学测量值特别有利于提取信号传导,分泌和循环分析物的作用,并识别与年龄相关疾病有关的含量和代谢途径。
分子法技术,包括蛋白质组学,已使关键信号通路阐明了介导大脑和骨组织之间双向通信的关键信号通路。在这里,我们简要摘要研究了研究跨组织细胞通信的骨 - 脑轴的需求。明确的临床和分子证据表明骨骼和脑细胞之间的生物学相互作用和相似性。在这里,我们回顾了目前研究大脑和骨骼疾病的质谱技术,分别重点是神经退行性疾病和骨关节炎/骨质疏松症。在分子水平上进一步研究了蛋白质,神经肽,骨化剂和激素在与骨骼和脑部疾病相关的分子途径中的作用是至关重要的。使用质谱和其他OMIC技术来分析这些跨组织信号传导事件和相互作用将有助于我们更好地了解疾病的进展和合并症,并有可能确定治疗性干预措施的新途径和目标。蛋白质组学测量值特别有利于提取信号传导,分泌和循环分析物的作用,并识别与年龄相关疾病有关的含量和代谢途径。
摘要:肠道微生物及其代谢产物积极参与宿主免疫的发展和调节,这可能会影响疾病易感性。在此,我们回顾了肠道微生物群 - 免疫轴的最新研究进步。我们详细讨论了肠道微生物群是如何成为新生儿免疫发育的转化点,如新发现的典型,例如在子宫肠道代谢组和断奶反应中,例如母体印记,例如母体印记。我们描述了肠道菌群如何塑造先天性和适应性免疫,重点是代谢物短链脂肪酸和二胆酸。我们还全面描述了微生物群 - 免疫轴的破坏如何导致免疫介导的疾病,例如胃肠道感染,炎症性肠道疾病,心脏内代谢性疾病,心血管疾病,糖尿病,糖尿病,糖尿病和高度疾病,自动育种,自动繁殖(例如心脏血管疾病)高敏性(例如哮喘和过敏),心理疾病(例如焦虑症)和癌症(例如结肠直肠和肝癌)。我们进一步涵盖了粪便微生物群移植,益生菌,益生元和饮食多酚在重塑肠道菌群及其治疗潜力中的作用。继续,我们研究了肠道菌群如何调节免疫疗法,包括免疫检查点抑制剂,JAK抑制剂和抗TNF疗法。我们最后提到了宏基因组学,无菌模型和微生物群的当前挑战,以对肠道微生物群如何调节免疫力有基本的了解。总的来说,这篇综述提出了从微生物组靶向干预措施的角度改善免疫疗法的效率。
左心室功能障碍的急性,瞬态发作是Takotsubo综合征的特征。它代表所有急性冠状动脉综合征(ACS)的所有病例中的2%,并且主要发生在绝经后妇女中,通常是遵循明显的身体或情感压力源。可以根据临床症状和血管造影的冠状动脉疾病诊断。心室术仍然是诊断的金标准。尽管其短暂性特征特征塔takotsubo综合征不应被视为良性疾病,因为并发症发生在几乎一半的患者中,而死亡率达到4-5%。最近,由于大规模释放儿茶酚胺导致心肌功能障碍,Takotsubo综合征也可能导致永久性心肌损伤。已经采取了不同的机制来解释这种迷人的综合征,例如斑块破裂和血栓形成,冠状动脉痉挛,微循环功能障碍,儿茶酚胺毒性以及心肌存活途径的激活。这里仍然存在一些需要研究的Takotsubo综合征:心脏与大脑之间的复杂关系,永久性心肌损害的风险以及心肌细胞的损害。我们的综述旨在阐明这种复杂疾病的病理生理学和机制,以管理诊断和治疗算法,以在医生和患者之间产生功能协同作用。
摘要:胃肠道肿瘤(GIST)代表了癌基因成瘾的范式模型。尽管突变状态对临床结果产生了众所周知的影响,但我们仍需要将知识扩展到影响GIST患者影响行为异质性异质性的其他因素。越来越多的研究表明,肿瘤微环境(TME)主要由肿瘤相关的巨噬细胞(TAMS)和淋巴细胞(TILS)和基质分化(SD)人群,对预后和对治疗的反应具有显着影响。有趣的是,即使当前对免疫反应在这种情况下的作用的了解仍然有限,但最近的临床前和临床数据强调了TME在GIST中的相关性,在不久的将来对临床实践的可能影响。此外,免疫检查点的表达(例如PD-L1,PD-1和CTLA-4)及其与GIST中的临床表型的关系正在成为潜在的预后生物标志物。展望未来,这些变量与要点的潜在肿瘤微环境有关,尽管仅限于仍在努力的试验,可能会导致潜在的免疫疗法使用,或者在晚期TKI-Cractory GIST中单独或与靶向治疗结合使用。本综述旨在加深对突变状态与要点免疫微环境之间潜在联系的理解。
毫无疑问,细胞信号操控是抗癌治疗的关键策略。此外,细胞状态决定药物反应。因此,建立细胞状态和治疗敏感性之间的关系对于癌症疗法的发展至关重要。在个性化医疗时代,使用患者来源的离体细胞模型是将关键研究成果转化为临床应用的一种有前途的方法。在这里,我们专注于细胞对抗癌治疗耐药性的非致癌基因依赖性。使用一组具有各种干细胞和 EMT 相关标志物、不同程度的 ERK1/2 和 AKT 磷酸化以及对抗癌治疗反应的患者肺肿瘤衍生细胞系研究了对 MEK/ERK 和 PI3K/AKT 通路抑制剂(关键细胞功能调节剂)的反应信号相关机制。研究激酶之间的相互作用是我们研究的目标。尽管 MEK/ERK 和 PI3K/AKT 相互作用被认为是细胞系特异性的,其中致癌突变起着决定性作用,但我们证明了所有研究的细胞系中 MEK/ERK 和 PI3K/AKT 信号通路之间存在负反馈回路,无论基因型和表型差异如何。我们的研究表明,各种不同的 ERK 信号抑制剂(selumetinib、trametinib 和 SCH772984)可增加 AKT 磷酸化,相反,AKT 抑制剂(capivasertib、idelalisib 和 AKT 抑制剂 VIII)可增加对照细胞和顺铂治疗细胞中的 ERK 磷酸化。然而,激酶之间的相互作用取决于细胞状态。 ERK 和 AKT 之间的反馈被局部粘连激酶抑制剂 PF573228 减弱,并且在悬浮生长的细胞中也是如此,这表明细胞外接触在调节激酶之间的串扰方面可能发挥着作用。此外,研究表明,MEK/ERK 和 PI3K/AKT 信号通路之间的相互作用可能取决于化疗刺激的强度。该研究强调了抗癌治疗期间细胞的空间位置和治疗强度的重要性。
摘要表皮生长因子受体 (EGFR) 中的体细胞激活突变是癌症(例如非小细胞肺癌 (NSCLC)、转移性结直肠癌、胶质母细胞瘤、头颈癌、胰腺癌和乳腺癌)中最常见的致癌驱动因素之一。针对 EGFR 信号通路的分子靶向药物已显示出强大的临床疗效,但患者不可避免地会出现获得性耐药。尽管针对 PD-1/PD-L1 的免疫检查点抑制剂 (ICI) 在多种癌症类型的部分患者中表现出持久的抗肿瘤反应,但它们对含有 EGFR 激活基因变异的癌症的疗效有限。越来越多的研究表明,新的 B7/CD28 家族成员(如 B7-H3、B7x 和 HHLA2)的上调与 EGFR 信号传导有关,并可能通过创建免疫抑制肿瘤微环境 (TME) 导致对 EGFR 靶向疗法的耐药性。在本综述中,我们讨论了 EGFR 信号传导对 PD-1/PD-L1 通路和新的 B7/CD28 家族成员通路的调节作用。了解这些相互作用可能有助于制定联合治疗策略,并可能克服当前对 EGFR 靶向疗法的耐药性挑战。我们还总结了抗 PD-1/PD-L1 疗法在 EGFR 突变癌症中的临床数据,以及
作者:JA Faralli · 2022 年 · 被引用 12 次 — 这会产生串扰,使 TM/SC 细胞能够对 ECM 中的变化作出反应,这种变化可能是由 TM/SC 上的机械力、衰老和疾病引起的。