Martin Hellman于1980年提出了时间内存权衡的概念,以对DES进行蛮力攻击。该方法由一个具有强度的预报阶段组成,其结果存储在表中,随后用来显着减少蛮力所需的时间。一个重要的改进是Philippe Oechslin撰写的2003年彩虹桌的介绍。然而,预先计算彩虹表的过程相当低效率,这是由于最终被丢弃的高计算值速率。Avoine,Carpent和Leblanc-Albarel于2023年推出了降级的彩虹桌子,其中包括在预先启动阶段回收链条。在本文中,引入了一种称为上升阶梯彩虹桌的新变体。公式提供了预测攻击时间,预先计算时间,内存要求和覆盖范围。通过理论结果和实施,分析表明,这种新变体对降级的彩虹桌和香草彩虹桌的高度改进都具有显着改善。具体而言,对于典型的99.5%的覆盖范围,上升阶梯式彩虹桌的预先计时时间比下降阶梯桌快30%,并且(最多)比香草彩虹桌快45%,而攻击时间分别降低了攻击时间高达15%和11%。
摘要。我们介绍了Sqisignhd,这是一种灵感来自SQISIGN的新的Quantum Digital Signature Sneps。sqisignhd利用了对SIDH攻击的最新态度突破,这允许有效地表示任意程度的同基因作为较高尺寸同等基因的组成部分。sqisignhd克服了sqisign的主要缺点。首先,它可以很好地扩展到高安全级别,因为Sqisignhd的公共参数很容易生成:基础字段的特征仅是表2 f 3 f'-1。第二,签名过程更简单,更有效。我们在28毫秒内采用C运行中实施的签名程序,与Sqisign相比,这是一个显着改善。第三,该方案更容易分析,从而降低了更具吸引力的安全性。最后,签名大小比(已经有纪录的)SQISIGN更紧凑,签名的签名小至109个字节,对于后Quantum NIST-1的安全性水平。这些优点可能是以验证为代价的,验证现在需要在维度4中计算一个同等基因,该任务的优化成本仍然不确定,因为这是很少关注的重点。我们对验证的实验性SAGEMATH实施在600毫秒左右运行,表明优化和低级实施后,维度4 iSEGEN的潜在Craplaphic ofgraphic兴趣。
数千到数百万个敏感信号需要通过稀释制冷机的所有温度阶段进行传输,以操作由许多量子位组成的未来大规模量子处理器。导热同轴电缆数量的激增将超出制冷机的冷却能力,对量子核心造成不利影响。将控制电子设备降至低温允许使用现有的超导电缆,减轻低温阶段之间的热传导,并且似乎是实现操作量子位数可扩展性的明确途径。这项博士论文旨在探索在低温下将工业 CMOS 28nm 全耗尽绝缘体上硅 (FD-SOI) 技术用于量子计算应用。我们的第一个目标是将有关低温下 FD-SOI 28nm 晶体管的稀疏现有知识扩展到电路设计的实际方面,然后用于开发紧凑模型。为了加快对具有长达一小时的固有冷却周期的单个器件的表征,我们设计了一个集成电路,该集成电路多路复用了数千个具有不同几何形状和栅极堆栈类型的晶体管,用于低频测量电流-电压特性和从 300 到 0.1K 的配对分析。我们讨论并分析了不同温度下电路设计中重要量的变化趋势,例如跨导、电导和单个晶体管的跨导与漏极电流比。其次,我们探索了半导体量子器件与经典电子器件的低温共积分和全片上集成,旨在实现低至毫开尔文范围的特定测量。我们首先通过设计和表征低功耗跨阻放大器 (TIA) 来关注量子点器件的亚纳安电流测量。高增益放大器成功应用于测量单量子点和双量子点器件的电流,这些器件分别通过引线键合几毫米或片上集成几微米。为了进一步利用集成到同一基板的优势,我们将 GHz 范围的压控振荡器连接到双点的其中一个栅极,以尝试观察完全集成设备中的离散电荷泵。最后,我们提出了一种新的测量方案,利用低温电子学功能作为众所周知的反射测量法的替代方案,解决了单个量子器件栅极电容的测量问题。通过在 200 MHz 范围内集成电压控制电流激励和电压感应放大器,两者都靠近连接到 LC 槽的量子器件,器件电容变化的读出电路变成纯集总元件系统,具有谐振电路的阻抗测量,而没有任何像反射法中那样的波传播。这种方法增加了测量装置的简单性和紧凑性。我们甚至用由晶体管和电容器组成的有源电感器取代了反射法中使用的笨重无源电感器,在相同电感下面积降低了 3 个数量级,从而提供了更好的可扩展性。由此产生的电路成功测量了 4.2K 下纳米晶体管的 aF 电容变化,揭示了栅极电容中随栅极和背栅极电压而变化的振荡量子效应。在这篇论文的最后,给出了一幅与电路架构和设计相关的挑战的图景,最终目标是进入大规模量子处理时代。
金属间化合物是一类特殊的金属材料,其特性使其可以在传统金属材料失效的条件下使用;这些条件包括高温、腐蚀性环境以及极端的磨蚀和粘合应力。许多金属间化合物表现出非常好的物理和机械性能,特别是非常好的热稳定性、高熔点、良好的耐腐蚀性和低密度,这使它们成为高温应用的合适候选材料。然而,这些材料的延展性有限,脆性较高,尤其是在低温下,这阻碍了它们的广泛应用。基于中间化合物的材料的用途非常广泛,但始终有必要从物理或机械性能的角度考虑特定材料的选择。它们被用作建筑材料、形状记忆材料(NiTi)、电阻炉加热元件(MoSi2)、磁性合金(Ni3Fe)、储氢材料(Mg2Ni、LaNi5)或高温材料(TiAl、NiAl),或用于强氧化环境(FeAl)。
语音晶体(PNC)表现出通常在天然材料中发现的声学特性,这导致了新的设备设计以进行声波复杂的操作。在本文中,我们报告了通过语音晶体中的线缺陷来构建微米尺度的语音波导,以实现片上紧密限制的引导,表面声波的弯曲,弯曲和分裂(锯)。PNC由定期镍支柱的平方晶格制成。它表现出一个完整的带隙,该带隙禁止在PNC内部锯的传播,但允许线缺陷内的传播。通过基于电镀的微生物制作过程,在128°Y型niobate底物上实现了波导。PNC晶格常数,支柱直径和支柱高度分别为10 𝜇𝑚,7.5 𝜇𝑚和3.2 𝜇𝑚。互插的换能器是单层整合在同一底物上的,用于195 MHz左右的SAW激发。通过使用扫描光学杂作干涉仪测量平面外表面位移场,可以通过测量平面外表面位移场来实验观察到语音波导中表面波的引导,弯曲和分裂。高频紧密限制的语音波 - 证明了精确的局部操作锯的可行性,这对于新兴的边境应用(例如基于声子的量子信息处理)至关重要。
加密原始图已用于各种非晶体目标,例如消除或降低随机性和相互作用。我们展示了如何使用密码学来改善解决计算问题的时间复杂性。特别是,我们表明,在标准的加密假设下,我们可以在保持正确性的同时设计比现有算法更快的算法。作为混凝土演示,我们构建了具有以下属性的陷阱矩阵的分布:(a)计算有限的对手无法将随机矩阵与从此分布中绘制的一个分布区分出一个随机矩阵,并且(b)给出了一个秘密键,我们可以将n×n matrix与接近近距离的矢量相乘。我们提供了过度有限的领域和真实的结构。这可以实现广泛的加速技术:任何依赖于随机矩阵的算法(例如那些使用降低维度降低的概念)的算法,可以用我们的分布中的矩阵代替它,从而实现计算加速,同时保持正确性。