在当今的数字时代,确保在线通信的安全性和隐私已变得至关重要。随着网络威胁的日益普遍性,对保护敏感信息的强大解决方案的需求比以往任何时候都更为重要。本文介绍了利用Java加密体系结构(JCA)来解决这些安全问题的安全消息传递应用程序的开发。应用程序集成了一套加密技术,包括对称密钥加密,不对称的密钥加密,加密哈希和数字签名,以确保用户之间交换的消息交换的机密性,完整性,真实性和不重复。
本文档提供了用于保护信息和信息系统的加密机制的建议和指南。这些建议适用于未分类信息以及包括begrenset的分类信息。任何保护分类信息的信息系统都必须由NSM逐案评估和证明。虽然NSM相信本文档中的建议提供了足够的安全性,至少从加密的角度来看,任何系统都应进行彻底测试及其安全性索赔,并由专家评估。仅遵循这些建议就不够。本文档提供了简单的建议,旨在涵盖大多数用例。通过设计,很少提出选项,它们之间的选择应基于非晶体学因素,例如软件可用性和互操作性问题。本文档的目的不是是合理的加密机制的详尽列表,并且在某些情况下,本文档中找不到适当的机制。任何人以某种方式缺乏或不适合其用例的任何人都可以与NSM联系,以了解他们可能遇到的任何问题。建议,任何计划构建一个涉及密码学的系统与具有加密专业知识的人联系,并且该文档可以用作与此类专家进行讨论的起点。
摘要。Benaloh和de Mare于1993年推出的密码蓄能器代表了具有简洁价值的一套,并提供了(非)成员身份的证据。 累加器已经发展,在匿名凭证,电子现金和区块链应用中变得至关重要。 为特定需求出现了各种属性,例如动态和通用性,导致多个累加器定义。 在2015年,Derler,Hanser和Slamanig提出了一个统一的模型,但此后出现了新的属性,包括零知识安全性。 我们提供了基于Derler等人的累加器的新定义。 的,适合所有属性。 我们还引入了一个新的安全物业,私人评估的不强迫性,以保护累加器免受伪造的侵害,并在Barthoulot,Blazy和Canard最近的累加器中验证了该物业。 最后,我们提供了有关累加器和可授权(非)会员证明属性的安全临时的讨论。代表了具有简洁价值的一套,并提供了(非)成员身份的证据。累加器已经发展,在匿名凭证,电子现金和区块链应用中变得至关重要。为特定需求出现了各种属性,例如动态和通用性,导致多个累加器定义。在2015年,Derler,Hanser和Slamanig提出了一个统一的模型,但此后出现了新的属性,包括零知识安全性。我们提供了基于Derler等人的累加器的新定义。的,适合所有属性。我们还引入了一个新的安全物业,私人评估的不强迫性,以保护累加器免受伪造的侵害,并在Barthoulot,Blazy和Canard最近的累加器中验证了该物业。最后,我们提供了有关累加器和可授权(非)会员证明属性的安全临时的讨论。
摘要 - 由于其在许多行业中的各种应用,因此iT的突出性正在增长。他们从现实世界中收集信息并通过网络发送。在过去几年中,小型计算设备的数量,例如RFID标签,无线传感器,嵌入式设备和IoT设备的数量已大大增加。预计他们会产生大量敏感数据,以控制和监测。这些设备的安全性至关重要,因为它们处理了宝贵的私人数据。需要加密算法来保护这些精致的设备。设备的性能受到RSA或AES等传统加密密码的阻碍,RSA或AES易于破解。在物联网安全领域中,轻巧的图像加密至关重要。用于图像加密,大多数当前使用的轻量级技术都使用单独的像素值和位置修改。这些方案受其高脆弱性的限制。本文使用合并的转换和扩展(CTE)和动态混乱系统引入了用于医疗物联网设备的轻质密码学(LWC)算法。建议的系统是根据跨熵,UACI和NPCR评估的。通过实验结果证明,建议的系统非常适合医学物联网系统,并且具有很高的加密和解密效率。所提出的系统的特征是其记忆使用率低和简单性。
1汤姆(J. J.),*,2 Onyekwelu,B。A.,3 Anebo,N。P. 4 Nwanze,A。C. 5 Akpan,A。G. 6 Ejodamen,P。U.1,2尼日利亚伊利亚州伊利诺拉大学计算机科学和网络安全系3尼日利亚奥托克大学计算机科学系3,尼日利亚丹尼斯·奥萨德贝大学4号计算机科学系,尼日利亚阿萨巴,计算机科学学院,计算机科学学院5尼日利亚伊布萨。通讯作者的电子邮件地址:1 joshua.tom@elizadeuniversity.edu.ng, +234-0803-078-1045,2 bukola.onyekwelu@elizadeuniversity.edu.edu.edu.ng,3 nlerumpa@fuotuote@fuotuoke.eduoke.edu.ng,4nwang.ng.ng.ng.ashe.ashe.ashe.ashe.ashe.ashe.ashe.ashe.ashe.ashe.ashe.ashibashe,,, abasakpan@futia.edu.ng,6 piusejodamen@adun.edu.ng
•密码学数学中的研究人员现在,使用EasyCrypt等语言在论文中发布正式的规格和安全性属性证明[10]。•加密算法的正式(但可执行)的规范语言,例如加密货币[11],最终在行业和政府中实现了接受和更广泛的使用。•自动合成和加密软件的验证,包括菲亚特加密[12]的工作,茉莉语和工具集[13],HAX [14],我们自己的努力等。•政府是其他标准设定的机构正在认识到内存和类型安全编程对于关键应用程序的重要性。•“基于证据”或“基于原则的”保证[8]在安全关键领域多年使用后,正在发展。•IETF最近站立了一个新的“正式方法研究小组” [15],以探讨形式的符号和方法如何在将来改善IETF的工作。
摘要:加密系统的进步在数字取证领域提出了机会和挑战。在数字信息的安全性至关重要的时代,非侵入性检测和分析加密配置的能力变得很重要。由于加密算法在较长的关键长度方面变得更加健壮,因此它们提供了更高级别的安全性。然而,非侵入性侧通道,特别是通过电磁(EM)发射,可以揭示机密的加密细节,从而为紧迫的法医挑战提供了新的解决方案。这项研究深入研究了EM侧通道分析(EM-SCA)的功能,专注于检测使用基于机器学习的方法采用的加密密钥长度和采用的算法,在调查过程中,这对于数字化法医可以具有工具性。通过细致的数据处理和分析,支持向量机(SVM)模型等在区分AES和ECC加密操作方面的准确性为94.55%。此功能可显着增强数字法医学方法,为无创露出加密数据的加密设置提供新颖的途径。通过在没有侵入性程序的情况下识别关键长度和算法,这项研究为在加密环境中进行法医研究的进步做出了重大贡献。
•Amazon Web Services,Inc。(AWS)•Cisco Systems,Inc。•网络安全性和基础设施安全机构(CISA)•Cloudflare,Inc。•Crypto4a Technologies,Inc。•CryptOnext Security•CryptOnext Security•Dell Technologies•Dell Technologies•DIGICERT•DIGICERT•DIGICERT•DIGIST•HP,HP.银行,N.A。•keyfactor
摘要 - 由于小包大小,经典数据保护方案不适合水下通信。本文解决了此问题,并包含两个主要结果。作为第一个结果,引入了一种适用于小消息大小的新的对称密钥加密协议。加密方案利用灵活的量子置换板(QPP)对称键块密码。它将QPP与块密码计数器模式和一个随机数生成器结合在一起,并带有共享秘密,以使QPP适应短的水下协议数据单位。加密和解密算法是定义的,在计数器模式下在QPP上构建。分析算法。分析表明该方案没有达到完美的不可区分性。但是,分析还表明消息碰撞概率可能非常低。该方案是通用和适应性的。作为第二个结果,新的对称加密方案适用于远程水下通信协议(发音您窃窃私语)UWSPR。与理论一致分析设计。还解决了相关的问题,例如关键大小和关键产生,以及水下环境所面临的挑战。关键字 - 水下通信,水下网络,安全性,机密性,加密,量子置换板,(发音您窃窃私语)UWSPR