对有针对性表示的有向图建模是在图形结构数据上执行机器学习的基本要求。几何嵌入模型(例如双曲线,锥体和盒子嵌入)在此任务中出色,表现出有针对性图的有用的电感偏差。然而,对包含周期和某些传递性元素的定向图进行建模,这是现实世界中常见的两种属性,这是具有挑战性的。框嵌入可以被认为是将图表示作为某些学到的超图上的交点,具有自然的感应性偏置,以建模传递性,但是(正如我们证明的)无法对周期进行建模。为此,我们提出了二进制代码框嵌入,其中博学的二进制代码选择了一个相交的图表。我们探索了几种变体,包括全局二元代码(相当于交叉点的联合)和每个vertex二进制代码(允许更大的灵活性)以及正则化方法。理论和经验结果表明,所提出的模型不仅保留了有用的传递性电感偏见,而且还具有足够的代表能力来模拟任意图,包括带有周期的图形。
摘要:在这项研究中,证实了脑电信号向量的新数学模型,该模型是在脑量表界面操作员多次重复的条件下注册的。研究信号的节奏比已知模型具有许多优势。这个新模型为研究多维分布函数开辟了道路。高阶的初始,中心和混合力矩功能,例如每个脑电图信号分别;以及它们各自兼容的概率特征,其中最有用的特征可以选择。这可以提高大脑 - 计算机界面操作员的心理控制影响(分类)的检测(分类)。基于开发的数学模型,证实了电位信号信号向量的统计处理方法,这些方法包括对其概率特征的统计评估,并有可能对电脑信号的概率特征进行有效的联合统计估计。这为来自不同传感器的信息协调整合提供了基础。在频域中使用高阶函数及其光谱图像作为大脑 - 计算机接口系统中的信息特征。在实验中确定了它们对脑计算机界面操作员的心理控制影响的显着敏感性。将贝塞尔的不平等应用程序应用于信息特征的矢量尺寸(从500次增加到20个数字)的问题,这可以显着降低算法的计算复杂性,以降低算法的计算复杂性。也就是说,我们在实验上确定,只有20个值的傅立叶估计值的傅立叶估算值的较高级别函数的傅立叶变换非常适合构成大脑计算机界面中信息效率的向量,因为这些频谱组成的统计量占相应的量化量的较高的统计量,这是相应的统计量的均可构图。信号。
(EDLC),其中流行的机制需要在高表面积材料和液体电解质之间的界面处进行非法拉第电荷存储。这些储能装置由于其高功率密度(10 kW kg −1 )、快速响应时间(1 s)、循环寿命(10 5 次循环)和安全性而引人注目。[1] 纳米多孔碳材料通常用于 EDLC。它们的多孔结构充当任何介质的批量缓冲库,从而减少离子对孔内表面的传输阻力。[2] 增加的孔隙可及性可容纳更多阳离子来填充电极的双层,从而产生 200 F g −1 数量级的比电容,就像活性炭的情况一样。 [3] 后者在这些储能装置中被广泛使用,因为它价格低廉,即碳化过程源自木材、煤和坚果壳,与其他多孔材料(如模板碳和碳化物衍生碳)相比,更容易制备。 它的比表面积约为 2000 m 2 g − 1 ,可为标准电池电极提供 ≈ 30 mAh g − 1 V − 1,而标准电池电极为 150 mAh g − 1 V − 1。[4,5]
摘要 —本文讨论了在具有周期性负荷曲线的工厂(通常是钢铁厂)及其自己的电能来源(通常是蒸汽轮机)中,使用基于电池的储能系统进行调峰的简化经济评估。有几种可能的动机和/或好处有待探索。本文重点研究了涡轮机和 BESS 与总投资和运营成本之间的最佳尺寸。提出了一种集成到这些工厂的方法。提出了一种电池储能系统 (BESS) 运行的控制策略。影响在于纳入所有经济上重要的因素。最后,根据钢铁厂负荷图和其他关键因素定义和评估案例研究。结论部分讨论了该应用的技术经济潜力。
本文由 TigerPrints 汽车工程部门免费提供给您,供您免费访问。它已被 TigerPrints 授权管理员接受并纳入出版物。如需更多信息,请联系 kokeefe@clemson.edu。
版权所有 © 2022 Rouse 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
技术正在迅速发展,在新的方法和材料方面不断突破其极限。在这种情况下,3D(亚)微打印平台尤其令人感兴趣,因为它们可以制备具有高分辨率和任意复杂度的3D微纳米结构。这方面最有前途的技术之一是直接激光写入(DLW),[1,2]这是一种基于双光子聚合反应的增材制造技术,可用于获得高通量[3]和低于100纳米的分辨率的(亚)微米物体和图案。 [4]为实现此目的,DLW利用聚焦的长波长激光飞秒脉冲照射能够在高能辐射下交联的感光树脂。 [5]虽然树脂的吸收率与激光不匹配,但在焦点处,辐射强度足够高,以至于可能发生多光子吸收现象并引发聚合过程(或触发正性光刻胶的分解)。由于抗蚀剂对激光是透明的,因此打印仅发生在焦点周围非常小的体积内(“体素”,即二维“像素”的三维模拟)。通过移动后者,只需一个简单的步骤即可获得复杂的三维架构。由于其灵活性以及易于集成功能材料的可能性,DLW 已在 MEMS、[6] 光子学、[7] 表面改性、[8] 安全系统、[9] 和生物医学研究等领域找到了多种应用。[10,11]
通过环化增强的肽链的效力、特异性和安全性范围已经证明了环肽的基本特征。在 4 60 种 FDA 和 EMA 批准的肽中,2 三分之二为环状形式,在现代制药行业中发挥着重要作用。3 环化引入的约束使肽链在构象上更稳定,这提高了靶蛋白结合亲和力,并由于替代构象较少而减少了非特异性结合。4 构象灵活性降低降低了分子适合蛋白酶催化位点的机会,蛋白质组学抗性得到改善。5 环化还通过形成更大的相互作用表面来增加肽链的功效,以介入蛋白质-蛋白质相互作用。6 总体而言,肽链环化导致环肽与线性肽本质上不同。7,8
分子结构学的本质在于通过合理利用非共价力来定制设计和构建分子组装,以构建具有新特性和功能的理想结构。这种设计非共价系统的概念使我们能够构建用于生物和非生物应用的功能结构,同时加强我们对受控分子组装技术的理解。在这种情况下,生物分子或具有内置分子识别信息的仿生辅助物可以指导功能模块单元的受控分子组装,以构建纳米、微和宏观结构。环二肽 (CDP) 是环肽的最简单形式,由于具有众多组装和功能特性,可以作为分子构建块设计中的功能核心和辅助物。CDP 是主要的副产品,人们一直在努力抑制或防止肽合成过程中的副产品形成。在我们的实验室中,我们承担了将 CDP 升级为具有仿生和生物医学应用的主流产品的任务,这被称为 CDP 结构学。在本次演讲中,我将介绍 CDP 架构及其潜在应用。
随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化