摘要 —基于密度泛函理论(DFT)计算,提出了一种关于HfO 2 基铁电器件中氧空位(Vo)的新机制。在该机制中,除了已知的o相HfO 2 之外,m相HfO 2 中的Vo不仅作为电子陷阱而且也表现出铁电性。而“唤醒”过程中剩余极化的增加主要归因于这部分Vo-m相HfO 2 铁电单元。基于新机制,开发了动力学蒙特卡罗(KMC)模拟器来量化在HfO 2 基铁电器件中观察到的典型电场循环行为,包括唤醒、疲劳、分裂和击穿效应。这种新的认识建立了Vo与循环行为之间的关系,并进一步揭示了掺杂剂与HfO 2 基铁电器件唤醒特性之间的联系。
温室气体(GHG)的空气交换和海洋循环,包括二氧化碳(CO 2),一氧化二氮(N 2 O),甲烷(CH 4),一氧化碳(CO)和氧化碳(CO)和氧化氮(NOX¼NONO 2),在控制地球的进化方面是基于地球进化的基础。在过去的1个0年中,在理解,仪器和方法方面取得了重大进展,并破译了上海中温室气体的生产和消耗途径(包括地面和地下海洋至约1000 m)。现在,在当前条件下的全球海洋是CO 2的主要水槽,这是n 2 o的主要来源,也是CH 4和CO的次要来源。到目前为止,海洋作为水槽或NO X的重要性在很大程度上是未知的。仍然存在着很大的不确定性,并且对控制N 2 O,CH 4,CO 4,CO,CO,CO,CO,CO,x ins x of no and x of。没有对海洋温室气体生产和消费途径的基本了解,我们对持续的大海变化的影响(暖水,酸化,脱氧和富营养化)在海洋循环和温室气体交换中的效果至高无上。我们建议只有通过全面,协调和跨学科的方法,包括全球观察网络收集数据以及联合过程研究,才能生成必要的数据,以确定(1)确定相关的微生物和植物群社区,(2)量化海洋温室气体生产和消费途径的速率,(3)对他们的主要驱动程序和(3)的经济求解和(4)cistip and(4)cistriptions and Curtiquilition and Curtiptiral and Curtipertions and Curtiptrion and Curtipertions and Curtiptiral and Curtiptiral and Curtine and Curtine and Curtiptiral and Curtiment。
硅(Si)由于其高容量而被认为是下一代阳极的有前途的阳极材料。然而,循环过程中大量的膨胀和主动颗粒粉碎会迅速恶化电池性能。SI阳极粒径和粒子粉碎之间的关系以及循环过程中Si颗粒的结构演变尚不清楚。在这项研究中,对未包装和还原的氧化石墨烯(RGO)包裹的SI纳米颗粒(SI@RGO)的形态变化进行了定量的,时间分辨的“ Operando”小角度X射线散射(SAXS)研究。结果提供了SI粒径变化以及非辅助RGO在减轻SI体积膨胀和粉碎中的作用的清晰图片。此外,这项研究证明了与其他方法相比,在电化学环境中“操作”萨克斯的优势。
甲状腺素相变材料(PCM)是一类独特的化合物,其可切换的光学和电子特性促进了微电子和麦克风学中新兴应用的爆炸。任何应用程序的关键是PCM可在大量循环中可靠切换在晶体和无定形状态之间的能力。在微电子记忆的情况下,该问题已经进行了广泛的研究,但当前基于PCM的光学设备的耐力较低。要了解限制PCM的故障机制,专门在微电体设备中耐力,我们开发了一个片上电阻的微型供电平台和一个自动多模式表征系统,以分析光学PCM的循环性能。证明了超过50,000个周期的大区块PCM设备可逆切换。
在所谓的超级地震中进行灾难,就像2011年发生在毁灭性的tohoku-oki地震期间。与地震相关的海底变形和摇动可以重新探测大量的沉积物和新鲜的有机碳,随后通过重力流动到哈达尔沟槽盆地的末端水槽中。为了研究巨型地震的长期历史并研究地震在超深水环境中的作用,IODP Expedition 386团队已收集并分析了58个从孔中取出的58个沉积物核心,该孔在500千万千万千千万英寸的500千万英寸井下的15个地点深37.82米处。“这些操作探险成就取得了成功的深度提交采样,在海平面以下7445-8023 m之间的水深下水,在50多年的科学海洋钻井和训练中创下了两个新记录。”“我们已经在8023米的水深下方的最深的水位位置,并从海拔8060.74米处恢复了最深的亚海水平样品”。
在循环过程中,活性材料的损失以及复杂的侧面反应会导致电池的复杂和非线性降解,这引起了对LIBS状态健康(SOH)的准确且高效预测的巨大挑战。当前,巨大的努力已致力于开发高级模型,以预测电池寿命,尤其是物理和(半)经验模型。7 - 9个物理模型旨在对电池的特定潜在降解过程进行定量理解。10 - 12虽然可以对电池降解所涉及的电化学过程进行相对预先描述,但通常会与具有多PLE参数的一系列部分偏微分方程相吻合,这些方程很难安装。因此,物理模型通常缺乏良好的概括性能。替代,提出了经验和半经验模型,以通过关联能力和各种变量来描绘降解轨迹。但是,这种相关通常缺乏物理和化学含义,这几乎不能保持相对较低的数据的鲁棒性,并且在实际应用中受到限制。8,17,18
由于高能量密度设备的优势,高能密度的高能密度需求迅速生长。除了锂离子电池,Lith-ium金属电池(LMB)之外,由于理论特异性极高(3860 mAh g –1,2062 mAh cm –3),因此被认为是下一代可充电电池,并且是最低的Redox电势(–3.04 V vs.标准氢电极)[1-3]。However, LMBs has severe problems due to (1) uncontrollable lithium dendrite formation, result in penetration of the separator, causing short circuit, (2) large volumetric and morphological changes during charging process, (3) continuous reactions between lithium metal and electrolyte resulting from the crack of solid electrolyte interphase (SEI) layers on the lith- ium metal surface [4,5].这些问题导致循环寿命和安全风险恶化。已经探索了几种策略,例如改变电解质(锂盐,溶剂(碳酸盐,乙醚)和功能添加剂)以形成稳定的SEI
摘要 电子组件使用各种具有不同机械和热性能的聚合物材料来在恶劣的使用环境中提供保护。然而,机械性能的变化(例如热膨胀系数和弹性模量)会影响材料的选择过程,从而对电子产品的可靠性产生长期影响。通常,主要的可靠性问题是焊点疲劳,这是电子元件中大量故障的原因。因此,在预测可靠性时,有必要了解聚合物封装(涂层、灌封和底部填充)对焊点的影响。研究表明,当焊料中存在拉伸应力时,由于聚合物封装的热膨胀,疲劳寿命会大大缩短。拉伸应力的加入使焊点处于周期性多轴应力状态,这比传统的周期性剪切载荷更具破坏性。为了了解拉伸应力分量对微电子焊点疲劳寿命缩短的影响,有必要将其分离出来。因此,我们构建了一个独特的样本,以使无铅焊点经受波动的拉伸应力条件。本文介绍了热机械拉伸疲劳样本的构造和验证。热循环范围与灌封膨胀特性相匹配,以改变施加在焊点上的拉伸应力的大小。焊点几何形状的设计具有与 BGA 和 QFN 焊点相关的比例因子,同时保持简化的应力状态。进行了 FEA 建模,以观察焊点在热膨胀过程中的应力-应变行为,以适应各种灌封材料的特性。焊点中轴向应力的大小取决于热膨胀系数和模量以及热循环的峰值温度。样本热循环的结果有助于将由于灌封材料的热膨胀而导致焊点经历的拉伸应力的大小与各种膨胀特性相关联,并为封装电子封装中焊点的低周疲劳寿命提供了新的见解。简介大量电子元件故障归因于焊点疲劳故障。航空航天、汽车、工业和消费应用中的许多电子元件都在波动的温度下运行,这使焊点受到热机械疲劳 (TMF) 的影响。电子组件中的焊料疲劳是温度波动和元件与印刷电路板 (PBC) 之间热膨胀系数 (CTE) 不匹配的结果。在温度变化过程中,PCB 和元器件 CTE 的差异会引起材料膨胀差异,从而使焊点承受剪切载荷。为了减少芯片级封装 (CSP) 中焊点所承受的剪切应变,人们使用了各种底部填充材料来限制焊点的变形。芯片级焊料互连(例如倒装芯片封装中的焊料)尤其受益于底部填充材料,因为它可以重新分配热膨胀应力,从而限制施加在焊料凸点上的应变。除了限制剪切应变之外,底部填充材料的膨胀还会导致球栅阵列 (BGA) 焊点产生较大的法向应变。Kwak 等人使用光学显微镜的 2D DIC 技术测量了热循环下焊点的应变 [1]。他们发现,CTE 为 30 ppm/ºC 且玻璃化转变温度 (T g ) 为 80ºC 的底部填充材料在 100ºC 的温度下可以产生 6000 µƐ 的平均法向应变。这些高法向应变并不像 BGA 封装中的剪切应变那样表现出与中性点距离相同的依赖性。法向应变的大小与 CTE、弹性模量 (E)、封装尺寸和温度有着复杂的依赖关系。法向应变的增加使焊点受到剪切应变和轴向应变的组合影响,这反过来又使焊点在温度波动的条件下受到非比例循环载荷。
溶于电解质中的高活动嘴唇与Li金属阳极化学反应。 [9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。 [10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。 [11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。 [12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。 已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。 [13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。 [14]溶于电解质中的高活动嘴唇与Li金属阳极化学反应。[9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。[10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。[11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。[12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。[13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。[14]
自数十年以来,PCT基本上是在直流模式下执行的,在DC模式下,仅通过传导损失(Joule效应)获得功率芯片的自加热。如今,此类可靠性测试也在高压下进行切换模式进行,其中通过传导和开关损耗的组合获得加热[3,9,10,11]。 在过去十年中,在切换模式下仅进行了相对少量的测试。 由于在最后一个模式中的应力条件更代表了运行中应用的压力条件,因此应有的应力和降解应与操作条件更好地相关。 无论测试模式如何,目标是评估组件,包装和互连的行为和寿命。 然而,可以根据传导和开关损耗之间的相对重量来修改芯片上的热应力分布。 因此,不仅有必要比较如今,此类可靠性测试也在高压下进行切换模式进行,其中通过传导和开关损耗的组合获得加热[3,9,10,11]。在过去十年中,在切换模式下仅进行了相对少量的测试。由于在最后一个模式中的应力条件更代表了运行中应用的压力条件,因此应有的应力和降解应与操作条件更好地相关。无论测试模式如何,目标是评估组件,包装和互连的行为和寿命。然而,可以根据传导和开关损耗之间的相对重量来修改芯片上的热应力分布。因此,不仅有必要比较