1案例西部储备大学生物医学工程系,俄亥俄州克利夫兰,俄亥俄州,44106,2 2号神经外科系,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94035,3史坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,CA 94035,44035,44035,44035,44035,44035 RI 02912, 6 Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02912, 7 VA RR&D Center for Neurorestoration and Neurotechnology, Providence, RI 02912, 8 Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, 9 Department of Neurological Surgery, Case Western Reserve School of Medicine School俄亥俄州克利夫兰,俄亥俄州克利夫兰44106,大学医院神经病学系10,克利夫兰医学中心,俄亥俄州克利夫兰医学中心,俄亥俄州克利夫兰,44106,11 11,布朗大学,普罗维登斯,RI 02912,12912,12 02114, 14 Department of Bioengineering, Stanford University, Stanford, CA 94035, 15 Department of Neurobiology, Stanford University, Stanford, CA 94035, 16 Howard Hughes Medical Institute at Stanford University, Stanford, CA 94035, 17 Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94035, and 18 Bio-X Program,斯坦福大学,斯坦福大学,加利福尼亚州94035
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
间皮瘤是一种罕见的癌症,运输和采矿人群的死亡率较高。这些患者几乎没有治疗选择,这可能部分归因于肿瘤的化学疗法反应有限。我们最初假设奎诺克氨酸可以与顺铂合并,也可以在协同上消除间皮瘤细胞。与顺铂的组合导致了协同的细胞死亡,尽管新型的人工产生的Pemetrexed耐药细胞对Quinarparion更敏感,但与Pemetrexed的结合并不是协同的。出乎意料的是,我们发现具有NF2突变的细胞对喹分非常敏感。分别通过NF2异位表达和NF2突变体和野生型细胞系中的NF2异位表达和敲低来确定喹分河敏感性的这种变化。在间皮瘤中很少有共同的突变,并且这些肿瘤中有60%存在于60%。我们发现喹啉改变了NF2突变的细胞中3000多个基因的表达,这些基因与NF2野生型细胞的变化明显不同。在mRNA和蛋白质水平上验证了NF2/HIPPO途径生物标志物的变化。此外,喹乳可在NF2突变的细胞中诱导G1相细胞周期停滞,而NF2-WildType细胞中的S相阻滞。这项研究表明,奎诺克林可能对大部分间皮瘤患者具有重新利用的潜力。
HER2+/HR+乳腺癌是一种特殊分子类型的乳腺癌,现有治疗方法易产生耐药,需要“精准治疗”。吡咯替尼是一种泛HER-1激酶抑制剂,可用于HER2阳性肿瘤,而SHR6390是一种CDK4/6抑制剂,可以抑制ER+乳腺癌细胞周期进展和癌细胞增殖。在癌细胞中,HER2和CDK4/6信号通路可能不是冗余的,SHR6390与吡咯替尼联合抑制两条通路可能对HER2+/HR+乳腺癌产生协同抗癌作用。在本研究中,我们确定了双药联合使用的协同作用及其潜在的分子机制。我们发现SHR6390和吡咯替尼联合使用在体外协同抑制了HER2+/HR+乳腺癌细胞的增殖、迁移和侵袭。两药联合应用可诱导HER2+/HR+乳腺癌细胞株G1/S期阻滞及凋亡;两药联合应用可延长异种移植模型体系中肿瘤复发的时间。通过二代RNA测序技术及吡咯替尼耐药细胞株富集分析发现,FOXM1与诱导HER2靶向治疗耐药有关。在HER2+/HR+乳腺癌细胞株中,两药联合应用可进一步降低FOXM1磷酸化,从而在一定程度上增强抗肿瘤效果。这些结果提示SHR6390与吡咯替尼联合应用可能通过调控FOXM1来抑制HER2+/HR+乳腺癌的增殖、迁移和侵袭。
摘要 生物丁醇是一种有价值的生化药品,也是最有前途的生物燃料之一。糖丁酸梭菌 N1-4 是一种高丁醇生产菌株。然而,其强烈的自溶行为导致细胞稳定性差,尤其是在连续发酵过程中,从而限制了该菌株在长期和工业规模过程中的适用性。在本研究中,我们旨在评估糖丁酸梭菌基因组中自溶素基因与细胞自溶相关的作用,并进一步开发更稳定的菌株以增强丁醇产量。首先,通过与其他菌株中的同源基因的氨基酸序列比较,在该菌株中鉴定了推定的自溶素编码基因。然后,通过单独过表达所有这些推定的自溶素基因并表征相应的重组菌株,确定了四个负责显著细胞自溶活性的关键基因。此外,使用 CRISPR-Cas9 删除这些关键基因。发酵特性表明所得突变体的性能有所提高。本研究的结果揭示了自溶素对细胞稳定性和溶剂生产的作用的宝贵见解,并为开发用于增强生物燃料和生物化学品生产的强效菌株提供了重要参考。
J. Adam 6,L。Adams2,J ER。 Bielcik 14,J。Bielcikova38,L。Bland6,I。G。Borcy 3,J。D。Brandenburg 49,45, J. M. Campbell 39,D。Cebra8,I。Chacaberia29,6,P。Challopka14,B。K。Song 9,F-H。 Chang 37,Chang 6,N。Chankova-Bunzarova 28,A。Chatterjee 11,D。Chen 10,J。H. Chen 18,X。Chen 48,J。Cheng Choudhury 18,W。Christie6,X。Chu6,A. derevchikov 43,L。Didenko6,x O. Evdokimov 12,A。Ewigleben32, 6,A。Francisco 64,L。Fulek 2,C S. S.A. Mazer 46,K。Meehan 8,N。G. Minae 43,St.Michael 55 55,B。Morozov 46,M。Nagy 16,J。D. Nam 54,医学博士。 太阳12,Y。 太阳48,Y。A. Mazer 46,K。Meehan 8,N。G. Minae 43,St.Michael 55 55,B。Morozov 46,M。Nagy 16,J。D. Nam 54,医学博士。太阳12,Y。太阳48,Y。26,St. Heppelmann 8,St。Heppelmann42,N。Herrmann19,E。 ,X。Huang57,T。J。诸法39, Jowsaee 63,X。Ju 48,E。G. Judd 7,St.Kabana 53,M。L. Kabir 10,St.Kagamaster 32,D。Calinkin 25,K。Kang 57, 29,A。Kechechan 28,M。Celes 31,35 35 35,D。P. Kiko The 62,C。Kim 10,CIM 8 8,D。Kiseel 62,M。Kocan 14,L。Kochenda 35,L。K. Elayvalli 63,J。H. Care 25,R。Lacey 52,圣约翰浸信会6,J。Lauret 6,A。 ,W。Li45,x刘64,X。Liu39,Y R. My 6,Y。G. My 50,N。Magdy 12,R。Majka 64,D。 A. P. Suaide 47,M。Schumble 38,B。Summa 42,X。M. Sun 11,X。26,St. Heppelmann 8,St。Heppelmann42,N。Herrmann19,E。 ,X。Huang57,T。J。诸法39, Jowsaee 63,X。Ju 48,E。G. Judd 7,St.Kabana 53,M。L. Kabir 10,St.Kagamaster 32,D。Calinkin 25,K。Kang 57, 29,A。Kechechan 28,M。Celes 31,35 35 35,D。P. Kiko The 62,C。Kim 10,CIM 8 8,D。Kiseel 62,M。Kocan 14,L。Kochenda 35,L。K. Elayvalli 63,J。H. Care 25,R。Lacey 52,圣约翰浸信会6,J。Lauret 6,A。 ,W。Li45,x刘64,X。Liu39,Y R. My 6,Y。G. My 50,N。Magdy 12,R。Majka 64,D。A. P. Suaide 47,M。Schumble 38,B。Summa 42,X。M. Sun 11,X。A. P. Suaide 47,M。Schumble 38,B。Summa 42,X。M. Sun 11,X。我们的22,K。Nayak 11,D。Ne试9,J。M. Nelson 7,D。B. Nemes 64,M。Nie 49,G。Nigmatkululov 35,T。Niid 58,L。V. Nogach 58,L。Nogach 58,L。Nogach 58,A。Nogas 58,A。Nogas 58,A。Nora 58,A。A. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. Nunes 6,G。Odnic 31,A。Ogawa 6,S。OH 31,V。A. Ocorocov 35,B。S. Page 6,R。Pak 6,A。Pandav 36,Y。Panbratsev 28,B。Pawlitsev 28,B。Pawl 40,B。 11,C。Perkins 7,L。Pinsky 20,R。L. Pint´er 16,J。Plut 62,J。Porter 31,M。Possik 54,N。Pruhi 41,M。调整2,J。Puthi 63,J。Putschke 63,H。Qiu 26,A。 Quintero 54,S。K. Radhakrishnan 29,S。Ramachandran 30,R。L. Ray 56,R。Reed 32,H。G. Ritter 31,J.B. Roberts 45,O。V. Rogachevskiy 28,J。L. Romero 8,L。Ruan 6,J。Ruan 38,N。R. Sahoo 49,H。Salur 58,Salur 46,J。Salur 46,J。Salur 46,J。Sandwess 64,J。Sandwess 64,S。Sandweiss 64,S。Sandweiss 64,S.Sato 58,W。B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. Schmidke 6 , N. Schmitz 33 , B. Schweid 52 , F. Seck 15 , J. Seger 13 , M. Sergeeva 9 , R. Seal 10 , P. Seyboth 33 , N. Shah 24 , E. Shahliev 28 , E. Shahalev 28 , P. V. V. Sanganganathan 6 , P. V. V. Shanmunathan 6 , E M. Shao 48,F。Shen 49,W。Q. Shen 50,S。Shi 11,Q. Y. Shu 50,E。P. Sichtermann 31,R。Sikora 2,M。Simko 38,J。Singh 41,S。S. Singh 41,S。Singh 41,S。S. Singh 26,S。Singh 26,S。Singh 26,N。Smirnov 64,N。Smirnov 64, ,W。Solyst25,P。Sensen6,H。Spink4,B。Srivastava44,T。D。D. S. S. S. Stanislaus 60,M。Stefaniak62,D.J.Stewart 64,M。Strikhanov35,B。stringFellow35,B。stringfellow35,B。stringfellow44,A.B. Roberts 45,O。V. Rogachevskiy 28,J。L. Romero 8,L。Ruan 6,J。Ruan 38,N。R. Sahoo 49,H。Salur 58,Salur 46,J。Salur 46,J。Salur 46,J。Sandwess 64,J。Sandwess 64,S。Sandweiss 64,S。Sandweiss 64,S.Sato 58,W。B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. Schmidke 6 , N. Schmitz 33 , B. Schweid 52 , F. Seck 15 , J. Seger 13 , M. Sergeeva 9 , R. Seal 10 , P. Seyboth 33 , N. Shah 24 , E. Shahliev 28 , E. Shahalev 28 , P. V. V. Sanganganathan 6 , P. V. V. Shanmunathan 6 , E M. Shao 48,F。Shen 49,W。Q. Shen 50,S。Shi 11,Q. Y. Shu 50,E。P. Sichtermann 31,R。Sikora 2,M。Simko 38,J。Singh 41,S。S. Singh 41,S。Singh 41,S。S. Singh 26,S。Singh 26,S。Singh 26,N。Smirnov 64,N。Smirnov 64, ,W。Solyst25,P。Sensen6,H。Spink4,B。Srivastava44,T。D。D. S. S. S. Stanislaus 60,M。Stefaniak62,D.J.Stewart 64,M。Strikhanov35,B。stringFellow35,B。stringfellow35,B。stringfellow44,A.Sun 21,B。Surrow 54,D。N. Svirian 3,P。手术62,A。H. Tang 6,Z。Tang 48,A。Tang 35,T。T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. T. , M. Tokared 28 , C. A. Tomkiel 32 , S. Trentalage 9 , R. E. Tribble 55 , P. Tribedy 6 , S. Tribeyy 16 , O. Tsai 9 , Z. Tosai 6 , T. G. U. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. Upper 4 ,6,G。VanBuren 6,J。Vank38,A。Vasiliev43,I。Vassyliev17,F。Videbæk6,S。Vokal28,S。A。Vokal 63,F。Wang44,G。Wang9,J。S。Wang 21,J。S。Wang 21,J。S。Wang 21,J。S。Wang 21, P. Wang 48,Y. Wang 11,Y. Wang 57,Z. Wang 49,J.C.C.C. Web 6,P.C。Wedenk19,L。Wen9,G。Wen34,H。Weman31,H。Wemank 31,H。Wemank 31,S。Wissink 31,S。Wissink 25,R。Wit 59,Y。 WU 10,Z. G. Xiao 57,G。Xie 31,W。Xie 44,H。Xu 21,N。Xu 31,N。Xu 31,Y。Xu 50,Y。Xu 50,Y。Xu 50,Y。Xu 49,Y。Xu 6,Y。Xu 6,Z。Xu 9,Z。Xu 9,Z。Xu 9,Z。Xu 9,Z。Xu 9,Q. Yang 49,Q. Yang 49,Q. Q. Yang 49,Q. Yang Yang 49。 ,S。Yang 6,Yang 37,Z. Yang 11,Z.是45,Z.是12,L。Yi 49,K。Yif 6,H。Zbroszczyk 62,W。Zha 48,W。Zha 48,W。Zha 11,D。Zhang 11,D。Zhang 11,S。Zhang 48,S。Zhang 48,S。 x。 31,M。Zyzak 17
摘要:晚期胃肠道 (GI) 癌症的治疗越来越依赖分子治疗。HER2 和 PD-L1 状态的分子分析是转移性胃食管 (GEJ) 癌的标准,用于预测曲妥珠单抗(HER2 靶向治疗)和帕博利珠单抗(抗 PD-1 治疗)的益处,而扩展 RAS 和 BRAF 检测是转移性结直肠癌的标准,用于预测表皮生长因子受体 (EGFR) 靶向治疗的益处。错配修复 (MMR) 或微卫星不稳定性 (MSI) 检测是所有晚期 GI 癌的标准,用于预测帕博利珠单抗的益处,转移性结直肠癌的标准是使用或不使用伊匹单抗的纳武单抗。我们在此回顾了近期的开创性试验,这些试验进一步推进了这些癌症的靶向治疗,包括胰腺癌中的多聚腺苷二磷酸核糖聚合酶 (PARP) 抑制、结肠癌中的 BRAF 抑制以及胆道癌中的异柠檬酸脱氢酶 (IDH) 和成纤维细胞生长因子受体 (FGFR) 抑制。胃肠道恶性肿瘤的靶向治疗是这些晚期癌症治疗模式不可或缺的组成部分,并且已广泛确立了通过标准分子分析来确定候选药物的必要性。