本文介绍了一种阻力机动装置 (DMD),它可以在许多任务中取代此类系统。DMD 由四根以飞镖配置展开的可伸缩带弹簧臂组成,可以主动调节主卫星的阻力面积以进行轨道机动和任务后处置,同时利用空气动力和重力梯度扭矩提供被动三轴姿态稳定性。集成在 DMD 中的磁力矩器可抑制姿态振荡,并有助于确保卫星以正确的面天底指向稳定。本研究概述了 DMD 设计,并详细介绍了用于表征 DMD 性能和设计控制和操作方法的姿态和轨道模拟结果。本文重点介绍了 DMD 的姿态稳定性特性。
引言Duchenne肌营养不良症(DMD)是由编码细胞内蛋白质肌营养不良蛋白的基因突变引起的,是一种严重的X染色体染色体连接疾病,其特征是渐进的肌肉无力和变性。除了特征良好的骨骼肌病理学外,DMD还与相关的心脏并发症有关(Shirokova和Niggli,2013; Spurney,2011)。在其中,心律不齐和扩张的心肌病的发展极大地有助于与该疾病伴随的发病率和死亡率。在DMD背景下,导致心脏并发症的机制在很大程度上未知,这增加了对DMD动物模型的基础研究工作的需求。在使用的DMD动物模型中(McGreevy等,2015; Wells,2018),MDX小鼠是最著名的,最广泛使用的。它在鼠DMD基因的外显子23中具有过早的停止突变,因此未能翻译功能性全长肌营养不良蛋白(Sicinski等,1989)。尽管MDX小鼠是DMD的有用的遗传和生化模型,但仅部分模仿了人类疾病。因此,与DMD患者相比,MDX小鼠的寿命略有缩短,并且没有显示出明显的肌肉营养不良症状(Grady等,1997; Gutpell等,2015)。此外,MDX小鼠的心脏异常仅出现晚期(Quinlan等,2004),与DMD患者发生的心肌病相比是温和的(Grady等,1997; Janssen等,2005)。这质疑该动物模型研究心脏病表型的适用性。2014年,Larcher及其同事使用转录激活剂样效应子核酸酶靶向DMD基因的外显子23的发展肌营养不良蛋白缺陷型大鼠的发展(Larcher等,2014)。在这些DMD MDX大鼠中,心肌受坏死和纤维化的影响,并显示出进行性扩张性心肌病的迹象。超声心动图显示出明显的同心重塑和舒张功能的改变。基于这些发现,作者认为,DMD MDX大鼠中心脏病表型在DMD患者中观察到的,并且该动物模型可能适用于临床前DMD研究(Larcher等,2014)。该研究的弱点 - 实际关注骨骼肌肉 - 是DMD MDX大鼠的心脏病表型没有详细表征。例如,超声心动图仅对3个月大但不老的大鼠进行。此外,作者(Larcher等人,2014年)没有研究可能发生的血管并发症,例如增强的动脉僵硬度(Ryan等,2017)和内皮细胞(EC)功能障碍(Miike等,1987),这也可能有助于DMD患者的心脏病概念型的发展。最后,在细胞水平上的功能研究(即dmd MDX心肌细胞)尚未进行。考虑到缺乏证据,本研究的目的是提供处理编辑器的详细表征:Monica J.正义获得了2020年10月8日; 2020年12月23日接受
治疗至少 4 岁的杜氏肌营养不良症患者 Elevidys 是一种腺相关病毒基因疗法,最初于 2023 年 6 月获批用于治疗 DMD 基因确诊突变的 4 至 5 岁门诊 DMD 儿科患者。该适应症获得加速批准,基于在接受 Elevidys 治疗的患者中观察到的 Elevidys 微肌营养不良蛋白的表达,继续批准取决于确认性试验。Elevidys 禁用于 DMD 基因外显子 8 和/或外显子 9 存在任何缺失的患者。2024 年 6 月,FDA 批准扩大 Elevidys 的标签适应症,将 DMD 基因确诊突变且年龄至少 4 岁的 DMD 患者纳入其中。为确认功能益处,FDA 批准了对门诊患者的传统批准。FDA 批准了对非门诊患者的加速批准。是否继续批准用于非卧床性 DMD 患者可能取决于在确认性试验中对临床益处的验证。Elevidys 仍禁用于 DMD 基因外显子 8 和/或外显子 9 存在缺失的患者。
治疗;诊断;症状;遗传学。1. 引言杜氏肌营养不良症 (DMD) 是一种 X 连锁隐性疾病,由编码肌营养不良蛋白的 DMD 基因突变引起。DMD 的病理特征是细胞骨架蛋白的完全缺失 [1]。DMD 的临床特征是进行性肌无力,肌肉脆性主要分布在近端肢体、颈部和胸部 [2]。DMD 是最常见的肌营养不良症,也是最常见的致命神经肌肉疾病之一,每 3,500 名新生男婴中就有 1 名患有此病 [3]。临床表现始于儿童早期,伴有进行性肌肉萎缩和无力,最终导致死亡。蛋白质缺陷在出生时就存在,但通常直到出生后第二年或第三年才会在临床上观察到并诊断出来。这种疾病最终导致患者在 12 岁左右无法行走,需要使用轮椅,肌肉无力导致严重的脊柱侧弯,并最终在 25 岁左右因心脏和/或呼吸衰竭而死亡,尤其是那些不选择呼吸机支持的患者 [2]。人类 DMD 基因位于 Xp21.2 位点,主要在骨骼肌中产生杆状细胞质结构蛋白,在心肌、平滑肌、脑神经细胞和视网膜中存在同工型 [4–6]。人类的 DMD 基因为 2.3 Mb,有 79 个外显子,产生 14 kb RNA 和 427 kDa 蛋白质 [5,7,8]。三分之一的 DMD 病例是由新生突变引起的,三分之二的病例有家族史,通常是女性携带者 [9]。贝克尔肌营养不良症 (BMD) 是一种不太严重的肌营养不良症,症状与 BMD 相似,但进展较慢且不太严重 [10]。统计分析发现,DMD 的全球患病率是 BMD 的三倍 [11]。全球 DMD 患病率约为每 100,000 名男性中有 7.1 人,而普通人群中每 100,000 人中有 2.8 人。DMD 的发病率为每 100,000 人中有 19.8 人
DMD和BMD是可变的,进行性肌肉疾病。DMD具有更早的发作和更严重的症状。明显的DMD迹象出现在幼儿时代,通常是两岁和三岁,从难以移动,步行和跑步开始。DMD的男性通常会失去在十二岁之前走路和使用轮椅的能力。在二十多岁时,患有DMD的人会发展为心肌病。心脏和呼吸系统问题随着年龄的增长而恶化,通常会威胁生命。患有BMD的人通常不会出现症状。这些疾病通常会影响男性,女性通常无症状或患有温和的症状。
•对于卧床患者,在DMD基因中具有确认的突变。•对于非注射性并在DMD基因中有确认突变的患者。基于骨骼肌中的levidys微肌营养蛋白的表达,非疗法患者的DMD指示得到了加速批准。在验证性试验中,持续批准了此指示可能取决于对临床益处的验证和描述。疾病概述DMD是由DMD基因突变引起的一种罕见的,进行性X连锁的疾病,也称为肌营养不良蛋白基因。2-4美国DMD的发病率约为5,000名活着的男性出生。 DMD基因是最大的已知人类基因,大小总计2.3兆瓦。 该基因编码功能性肌营养不良蛋白,该蛋白是跨膜蛋白复合物的一部分,跨膜蛋白复合物跨越了骨骼和心脏肌肉细胞的肌膜。 这种复合物将细胞骨架与细胞外基质联系起来,从而为肌膜提供结构完整性,并有助于传递和吸收与肌肉收缩相关的休克。 DMD基因中的突变可防止功能性肌营养不良蛋白或肌营养不良蛋白的产生。 没有肌营养不良蛋白,DMD患者的正常活性会对肌肉纤维细胞造成过度损害。 随着时间的流逝,肌肉细胞被脂肪和纤维化组织代替。 进行性肌肉无力是DMD的主要表现。 这会导致失去行动,相关运动延迟,呼吸障碍和心脏功能的逐步下降。2-4美国DMD的发病率约为5,000名活着的男性出生。DMD基因是最大的已知人类基因,大小总计2.3兆瓦。该基因编码功能性肌营养不良蛋白,该蛋白是跨膜蛋白复合物的一部分,跨膜蛋白复合物跨越了骨骼和心脏肌肉细胞的肌膜。这种复合物将细胞骨架与细胞外基质联系起来,从而为肌膜提供结构完整性,并有助于传递和吸收与肌肉收缩相关的休克。DMD基因中的突变可防止功能性肌营养不良蛋白或肌营养不良蛋白的产生。没有肌营养不良蛋白,DMD患者的正常活性会对肌肉纤维细胞造成过度损害。随着时间的流逝,肌肉细胞被脂肪和纤维化组织代替。进行性肌肉无力是DMD的主要表现。这会导致失去行动,相关运动延迟,呼吸障碍和心脏功能的逐步下降。DMD的第一个临床症状是运动发展里程碑的延迟,例如步行,这是2岁左右的观察到的。通常会延迟诊断直到3至5岁。年龄是DMD进展的重要预后因素。目前无法治愈DMD。治疗的目的是管理症状,缓慢的疾病进展并延迟残疾。患有DMD的男孩通常会失去12岁或13岁以上行走的能力。过去,死亡率是在青春期或二十年代初发生的,但是随着呼吸道和心脏管理的进步,有些患者居住到第四个十年。DMD患者最常见的死亡原因是呼吸衰竭,呼吸道感染,心肌病和心律不齐。皮质类固醇是DMD治疗的中流型;但是,其在DMD中的作用机理尚不清楚。皮质类固醇可以改善疾病的症状,并延迟流动和其他后遗症的时间。Four anti-sense oligonucleotide therapies (exon-skipping) have been approved by the FDA: Exondys 51 ® (eteplirsen intravenous infusion), Vyondys 53 ™ (golodirsen intravenous infusion), Viltepso ™ (viltolarsen intravenous infusion), and Amondys 45 ™ (casimersen intravenous输液)。由于没有完成任何确认性临床研究,因此这些外显子的疗法的临床益处仍然未知。临床疗效在三项研究中评估了leverdys的疗效:1-4,7-9 Engark III期随机,双盲,安慰剂对照,确认性试验; II期研究;和IB期研究。在Embark(n = 125)中,从基线到第52周的主要终点
摘要 杜氏肌营养不良症 (DMD) 是由肌营养不良蛋白基因突变引起的 X 连锁隐性肌病。虽然常规治疗已经改善了患者的预后,但不可避免的进行性心肌病仍然是 DMD 患者死亡的主要原因。为了探索新的治疗方案,需要一种合适的涉及心脏的动物模型。我们使用 CRISPR/Cas9 基因组编辑生成了一种肌营养不良蛋白基因发生非框架突变的大鼠模型 (DMD 大鼠)。本研究旨在评估它们的心脏功能和病理,为未来开发 DMD 治疗方案的实验提供基线数据。与年龄匹配的野生大鼠相比,6 个月大的 DMD 大鼠在超声心动图评估中没有显示出显著差异。然而,10 月龄 DMD 大鼠的左心室 (LV) 缩短分数 (P = 0.024) 以及 LV 侧壁 (P = 0.041) 和右心室 (RV) 游离壁 (P = 0.004) 的组织多普勒峰值收缩期速度 (Sa) 均显著恶化。这些功能性发现与组织学分析的纤维化分布一致。尽管心脏表型比预期的要轻,但 DMD 大鼠的心脏受累分布和进展与 DMD 患者相似。这种动物可能是开发有效药物和了解 DMD 患者进行性心力衰竭的潜在机制的有用模型。 (Int Heart J 2020; 61: 1279-1284) 关键词:动物模型、肌营养不良蛋白、心肌病、超声心动图
杜氏肌营养不良症 (DMD) 是一种严重的、渐进性的、最终致命的疾病,会导致骨骼肌萎缩、呼吸功能不全和心肌病。肌营养不良蛋白基因被确定为 DMD 发病机制的核心,这让人们认识到肌肉膜和参与膜稳定性的蛋白质是该疾病的焦点。数十年来,人类遗传学、生物化学和生理学研究的经验教训最终确立了肌营养不良蛋白在横纹肌生物学中的多种功能。在这里,我们回顾了 DMD 的病理生理基础,并讨论了目前已接近或正在开展人体临床试验的 DMD 治疗策略的最新进展。本综述的第一部分重点介绍 DMD 以及导致膜不稳定、炎症和纤维化的机制。第二部分讨论了目前用于治疗 DMD 的治疗策略。这包括重点概述通过肌营养不良蛋白基因替换、修改、修复和/或一系列肌营养不良蛋白独立方法纠正基因缺陷的方法的优势和局限性。最后一部分重点介绍了目前正在临床试验中的 DMD 的不同治疗策略。
尽管数字健康技术有望改变医疗保健(人们正在持续努力以准确定义这些技术并制定分类法),但它们在临床实践中的应用非常有限,其监管环境仍在发展中,覆盖决策缺乏或不完整 1,2。本反思论文的重点是数字健康技术的一个子集,称为数字医疗设备 (DMD),根据医疗器械法规 (MDR) 和体外诊断医疗器械法规 (IVDR) 的要求进行 CE 标志是获得欧盟营销授权的强制性步骤 3,4。为了在各种护理环境中增加 DMD 的采用,必须了解其全部价值和影响。然而,目前还没有标准化的评估方法或通用语言来帮助解决投资数字健康技术的不确定性。虽然存在一些评估 DMD 和通知报销的框架,但这些框架的范围仍然过于严格,无法为所有 DMD 提供解决方案。例如,缺乏对 AI 的关注,并且供医疗保健专业人员使用的 DMD 通常不在范围内。