摘要。机械收缩和心脏放松在评估健康和患病的心脏功能方面起着重要作用。me-chanical模式由复杂的非线性3D变形组成,这些变形在受试者之间存在很大变化,很难观察到2D图像,这会影响心脏结果的预测准确性。在这项工作中,我们旨在通过一种新颖的几何深度学习方法来捕获心脏周期的末端舒张期(ED)和末端相结合(ES)阶段的3D双脑膜变形。我们的网络由一个编码器编码器结构组成,该结构直接与轻度点云数据一起使用。我们最初是由由主体混合种群组成的成对和ES点云对训练我们的网络,目的是准确预测ES输入的ED输出以及ED输入的ES输出。我们使用Chamfer距离(CD)来验证网络的性能,并发现ED和ES预测可以通过从英国生物银行队列的数据集中的平均CD进行1.66±0.62 mm来实现,其基础体素尺寸为1。8×1。 8×8。 0 mm [8]。 我们从预测中得出结构性和功能性临床指标,例如肌肉拨号质量,心室体积,射血分数和中风量,并发现平均平均值偏离其各自的金标准1.6%和可比标准偏差的平均偏差。 最后,我们显示了我们方法在数据集中特定子群之间捕获变形差异的能力。8×1。8×8。0 mm [8]。我们从预测中得出结构性和功能性临床指标,例如肌肉拨号质量,心室体积,射血分数和中风量,并发现平均平均值偏离其各自的金标准1.6%和可比标准偏差的平均偏差。最后,我们显示了我们方法在数据集中特定子群之间捕获变形差异的能力。
图1:晶格结构,紧密的结合定义以及单个和耦合Polyyne链的带结构。(a)在Polyyne中较短的键和较长的键之间跳跃术语。c原子在A和B位点由黑色和绿色圆圈表示。应注意,这是晶格结构的卡通图,旨在表明δ1>δ2和所描绘的长度不缩放。实际上,δ2〜0。97δ1。(b)在AA配置中显示的两个与链间跳的关闭链链。c原子用不同的颜色表示。该系统显然具有围绕ZZ'线的反射(平等)对称性或晶格翻译产生的任何其他线路的对称性。等效地,每个单位单元格还有一条奇偶校验对称性(未显示在图中)。垂直虚线表示(a)和(b)的单位单元格。(c)单个和(d)耦合的多扬链的带结构,用于放松的链间分离和AA堆叠。虚线蓝线代表紧密结合,实心绿松石线代表DFT带结构。轨道投影的带结构是为(e)单个和(f)耦合链附近x点附近的X点绘制的。各种轨道对频段的贡献用不同的颜色表示。用绿色虚线显示费米级。在(f)的插图中显示了x点处最高占用分子轨道(HOMO)的带状电荷密度。与(a)中相同的轴方向遵循了插图图。
前言................................................................................................................................................ xviii
在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
抽象的微结构依赖性变形和断裂行为是针对使用激光指导能量沉积(L-DED)方法打印的添加成分成分分级合金(CGA)的,以探索核能系统中不同金属关节的替代方法。从扫描电子显微镜(SEM)中的电子后散射衍射(EBSD)映射显示出明显的微观结构过渡,并降低了奥氏体形成元件(Ni和Mn),从奥斯丁岩()主导结构,包括一个复杂的复合结构,包括一个复杂的复合结构,并完全含有铁矿(ferrite),然后又有一位(),martensente and martense and themente and and and and and and and and and,以及ferente ant and and o and' 结构。EBSD数据,并使用Kikuchi衍射模式分析分析了变形机制和微观结构的演变。还使用扫描透射电子显微镜(STEM)进行了互补分析。富含Ni/Mn的奥斯丁岩含量的微观结构显示出两步性马塞塞利志转换的复杂变形机制(→→'),而保留在铁矿和/或mar虫基质中的次要奥氏体相位显示了单个变换途径(')。普通的错位滑行和通过部分脱位滑动的孪生在奥氏体变形中也很常见。同时,铁氧体和马氏体晶粒主要由普通位错滑和明显的晶格(晶粒)旋转变形。静态拉伸骨折也高度依赖于局部组成和相成分。
摘要 - 机器人辅助手术中的许多任务需要计划和控制操纵器与高度变形对象相互作用的动作。这项研究提出了一种基于位置动力学(PBD)模拟的现实,时界的模拟器,该模拟器模拟了由于导管插入术前术前计划计划和钥匙孔外科手术程序内的术中指导而导致的大脑变形。它通过考虑变形模型,嘈杂的感应和不可预测的驱动中的不确定性来最大化成功的可能性。PBD变形参数是在平行p的模拟幻影上初始化的,以获得对脑白质的合理起始猜测。通过比较所获得的位移与复合水凝胶幻像中导管插入的变形数据进行校准。知道灰质大脑结构的不同行为,对参数进行了细小的调整以获得广义的人脑模型。将大脑结构的平均位移与文献中的值进行了比较。模拟器的数值模型对文献采用了一种新颖的方法,并且通过使用记录的Vivo动物试验的记录变形数据,平均不匹配为4.73±2.15%,它已被证明与实际脑变形密切相匹配。稳定性,准确性和实时性能使该模型适合为KN路径计划,术前路径计划和术中指导创建动态环境。
摘要:确定用于修饰和操纵选择性特定基因的新的甚至更精确的技术为在基础研究中表征基因功能和用于基因组调控的潜在疗法提供了强有力的工具。基于核酸酶的技术(例如 CRISPR/Cas 系统)的快速发展彻底改变了新的基因组工程和医学可能性。此外,有关 CRISPR/Cas 系统的适当递送程序至关重要,之前大量的综述都集中在 CRISPR/Cas9-12 和 13 递送方法上。尽管付出了所有努力,CAS 基因系统的体内递送仍然具有挑战性。由于包装尺寸受限和某些细胞类型的无能,在使用包括病毒元件和化学载体在内的传统递送工具时,CRISPR 组件的转染通常效率低下。因此,微流控系统等物理方法更适用于体外递送。本综述重点介绍了微流控系统在临床和治疗研究中递送 CRISPR/Cas 系统的最新进展。
摘要:我们通过适当利用相同子系统的空间不可区分的程序来解决纠缠纠缠保护防止周围噪声的问题。为此,我们采用了两个最初分离和纠缠的相同Qubits与两个独立的嘈杂环境相互作用的相同量子。考虑了三种典型的环境模型:振幅阻尼通道,相阻尼通道和去极化通道。在交互后,我们将两个量子位的波函数变形以使它们在执行空间局部操作和经典通信(SLOCC)之前使它们在空间上重叠,并最终计算出所得状态的纠缠。以这种方式,我们表明可以在SLOCC操作框架中使用相同Qubits的空间不可区分性,以部分恢复环境破坏的量子相关性。总体行为出现:通过变形实现的空间不可区分越高,回收纠缠的量就越大。
封装脱层是半导体封装中存在的问题之一。了解特定情况下的脱层机理对于找出根本原因和实施稳健解决方案非常重要。在本研究中,进行了封装变形建模,以分析基板或封装在不同热条件下的变形。将建模结果与存在脱层问题的封装的实际封装变形进行了比较。结果发现,通过实际横截面分析观察到的变形与回流温度条件下的建模结果相符。因此,可以得出结论,脱层发生在封装回流期间,而不是在后模固化或先前工艺之后。关键词:封装脱层;变形建模;芯片粘接膜;回流;热条件。1.引言在半导体封装中,界面脱层是一个常见问题。它是不同芯片界面之间的分离