磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
神经科学研究如何在细胞外水平上实施复杂的大脑功能需要体内神经记录界面,包括微电极和读出电路,并且可观察力和空间分辨率增加。神经记录接口的趋势用于采用高通道计数探针或具有密集间隔记录位点的2D微电极阵列,用于记录大型神经元种群,因此很难节省资源。模拟前端的低噪声,低功率要求的规范通常需要大型硅职业,这使问题更具挑战性。减轻该消费区负担的一种常见方法依赖于时间划分多路复用技术,在该技术中,在频道之间部分或完全共享读出的电子设备,同时保留录音的空间和时间分辨率。在这种方法中,共享元素必须在每个通道较短的时间段上操作,因此,在较大的操作频率和信号带宽方面,活动区域被交易。因此,功耗仅受到轻微影响,尽管其他性能指标(例如内噪声或串扰)可能会降低,尤其是在整个读取电路在模拟前端输入中多重的时。在本文中,我们回顾了针对时间划分的多重神经记录系统报告的不同实施替代方案,分析了它们的优势和缺点,并提出了提高性能的策略。
成像技术的最新进展,用于产生大量高分辨率3D图像,尤其是Brainbow等多型标记技术,允许在密集的大脑中对邻近神经元的不良分化。这首先可以从光学显微镜图像中研究许多神经元之间的连通性。但是,缺乏可靠的自动化神经形态重建,使数据分析成为提取神经科学中丰富信息学的瓶颈。已经提出了基于超级氧基的神经元分割方法来解决此问题,但是,在最终分割中出现的大量错误阻碍了先前的方法。在本文中,我们提出了一种新型的无监督方法来追踪来自多光谱脑弓图像的神经元,该方法防止了分割误差并使用两种创新来追踪连续性误差:首先,我们采取了基于高斯混合模型的聚类策略,以改善为下一步骨骼提供准确的分离色的色彩通道。然后,提出了一种骨架图方法,以允许神经元树拓扑中的不连续性识别和区域。我们发现,这些创新可以比当前的最新方法更好地表现,从而导致更准确的神经元追踪结果接近人类专家注释。
1 爱沙尼亚生命科学大学农业与环境科学研究所,Kreutzwaldi 5,EE-51006 Tartu,爱沙尼亚;Miguel.Pecina@emu.ee (M.V.P.); R.D.Ward@brighton.ac.uk (R.D.W.); a.vain@ts.ee (A.V.); Kalev.Sepp@emu.ee (K.S.)2 爱沙尼亚生命科学大学林业与乡村工程研究所,Kreutzwaldi 5,EE-51006 Tartu,爱沙尼亚;Mait.Lang@emu.ee (M.L.); tauri.arumae@rmk.ee (T.A.); Diana.Laarmann@emu.ee (D.L.)3 塔尔图天文台,塔尔图大学,Observatooriumi 1,EE-61602 T õ ravere,爱沙尼亚 4 水生环境中心,环境与技术学院,布莱顿大学,Cockcroft 大楼,Moulsecoomb,布莱顿 BN2 4GJ,英国;N.G.Burnside@brighton.ac.uk 5 国家森林管理中心,Sagadi 村,EE-45403 Haljala,爱沙尼亚 * 通讯:raul.sampaio@student.emu.ee
因危重疾病住院的婴儿营养需求增加(由于代谢增加)和营养摄入减少(由于疾病相关问题,如厌食症或喂养困难),因此营养不良风险很高。这可能导致其正常生长减缓,称为“生长迟缓”。对这些婴儿进行适当的营养管理对于避免长期不良后果极为重要。喂食高能量和高营养的配方奶粉 (ENDF;每 100 毫升含 100 千卡能量和 2.6 克蛋白质,添加微量营养素) 可以有效增加这些儿童的营养和能量摄入。尽管印度儿科患者营养不良和生长迟缓的患病率很高,但关于印度婴儿使用 ENDF 的文献却很少。本文,我们报告了成功使用 ENDF 对两例因严重上呼吸道阻塞而导致生长迟缓的住院婴儿进行营养管理的情况。营养管理的目的是达到令人满意的体重增长,从而导致上呼吸道阻塞自发缓解。最初给予 ENDF 以提供 50-100 kcal/kg/天,剂量逐渐增加至 160-185 kcal/kg/天。两个婴儿对配方奶粉的耐受性良好,体重增长令人满意。这些病例清楚地表明,早期给予 ENDF 是增加危重婴儿营养和能量摄入的有效方法,从而促进追赶性生长,且没有任何明显的不良反应。
作者的完整清单:马丁内斯,天使;匹兹堡大学,工业工程克莱门特,J。;匹兹堡大学,朱芬;匹兹堡大学工业工程;匹兹堡科赫扎特大学,朱莉娅;匹兹堡大学,工业工程工程,莫赫森(Mohsen);匹兹堡大学,拉维工业工程工业工程;匹兹堡大学工业工程
图 1:信息子图提取的动机:(a)演示了从群体水平连接组数据中获取边推理矩阵的过程;(b)说明常用的社区检测结果(例如使用随机块模型)无法检测到任何信息子图;(c)显示现有密集子图发现结果的结果;(d)描述了一种理想的信息子图检测程序,该程序可以识别由信息边组成的有组织的、生物学上可解释的拓扑结构。(d)中的结果基于 ADSD 方法(详细信息请参阅结果部分)。
摘要 — 低地球轨道 (LEO) 上的密集小型卫星网络 (DSSN) 可使多种移动地面通信系统 (MTCS) 受益。然而,只有通过仔细考虑 DSSN 基础设施并确定合适的 DSSN 技术才能实现潜在优势。在本文中,我们讨论了 DSSN 基础设施的几个组成部分,包括卫星编队、轨道路径、卫星间通信 (ISC) 链路以及从源到目的地的数据传输通信架构。我们还回顾了 DSSN 的重要技术以及在 DSSN 中使用这些技术所面临的挑战。本文还确定了几个开放的研究方向,以增强 DSSN 对 MTCS 的优势。还包括一个案例研究,展示了 DSSN 在 MTCS 中的集成优势。
摘要 神经系统因其对意外感觉输入的强烈反应而臭名昭著,但这种现象的生物物理和解剖学基础仅被部分理解。在这里,我们利用生物详细模型的新皮层微电路的计算机实验来研究听觉皮层中的刺激特异性适应 (SSA),即神经元反应对重复(“预期”)音调有显著的适应性,但对罕见(“意外”)音调则无适应性。通过刺激投射到微电路的音调定位映射的丘脑皮层传入神经来模拟 SSA 实验;这些传入神经的活动是根据我们对单个丘脑神经元的体内记录建模的。建模的微电路自然地表达了许多实验观察到的 SSA 特性,表明 SSA 是新皮层微电路的一般特性。通过系统地调节电路参数,我们发现 SSA 的关键特征取决于突触抑制、尖峰频率适应和循环网络连接的协同作用。探索了这些机制在塑造 SSA 中的相对贡献,解释了与 SSA 相关的其他实验结果,并提出了进一步研究 SSA 的新实验。简介初级听觉皮层 A1 中的神经元表现出一种称为刺激的现象