密集编码,也称为超密集编码,是量子纠缠如何推动信息和通信技术的首批示例之一 [1]。量子纠缠目前被公认为量子通信和信息处理的重要资源 [2-5],它描述了经典领域之外的相关性,是实现许多方法的核心,包括量子隐形传态[6,7]、量子密码学[8-10]、玻色子采样[11,12]和随机电路采样[13,14]。密集编码协议允许双方在共享纠缠的帮助下传输在量子系统上编码的经典信息。通过使用二分纠缠态,可以在 ad 维系统中编码 2 log 2 d 比特的经典信息,从而克服了无辅助经典容量的上限 log 2 d。在理想条件下,密集编码方案利用 Alice 和 Bob 之间的无噪声量子信道。通过此量子信道,Alice 将二分纠缠态 σ AB 的部分 B 发送给 Bob。Bob 收到系统 B 后,系统 B 以概率 P x 服从泡利算子 U x 。通过无噪声量子信道的第二次使用,将编码系统发送回 Alice。在输出端,Alice 对 A 和 B 实施联合量子测量以检索经典信息。在这种情况下,容量 C ( σ AB ) 为 [ 15 , 16 ]
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
简并致密等离子体因其在现代技术和天体物理学中的重要应用而备受关注。这种等离子体在过去十年中引起了人们的极大兴趣,因为它们在半导体、金属、微电子、碳纳米管、量子点和量子阱等许多物理学领域都具有重要意义。此外,简并等离子体在聚变燃烧波的点火和传播方面表现出非常有趣的特征。在本文中,我们研究了静磁场对致密等离子体中电子能态和简并度的影响。利用微扰理论,考虑了两种情况,即强磁化电子和弱磁化电子。强磁场不会完全消除简并度,但可以降低简并度。扰动能量特征值 Δ 퐸 被计算得非常准确。此外,无论扰动态是否简并,能量 Δ 퐸 都是通过考虑轨道和自旋耦合 푊 푠 = ℵ( 푟) 㨀→ 퐿⋅ 㨀→ 푆 关于本征函数 Ψ 푛, 푙, 푚, 푚 푠 的平均值而给出的。其中㨀→ 퐿 是角动量矢量,㨀→ 푆 是电子的自旋矢量,ℵ( 푟) 是等离子体中自旋轨道耦合的能量,这在研究等离子体电子的能态和简并性时起着至关重要的作用。
许多行业将 5G 视为数字化转型战略的重要推动因素——但前提是网络能够满足其特定需求;例如,医疗管理的极端安全性。如果实现这一点,他们将能够利用 5G 实现 MBB 以外的更多用途,并帮助改变他们的工作方式和支持客户的方式。这反过来将对英国的生产力和竞争力产生深远影响,并带来重大的社会和经济效益。
产品描述Kaocrete B和Kaocrete 2600b比大多数难治性整体构造更多的塑料材料。它们非常适合抹灰,首选用于修补衬里和挡板。仅适用于相对较薄的部分。开枪时他们的反弹极低。kaocrete d是一款用于2500°F(1371°C)的整体服务。它具有增强的流动能力,适用于一般职责施放应用。Kaocrete HS和Kaocrete HS Gun是高强度铸造和枪支混合物,可服务2600°F(1427°C)。它们结合了中间纯钙铝水泥和大小的高岭土聚集体。kaocrete HS可以在正常的水位上以极高的流量或减少的水为基础,以实现超高强度。Kaocrete HS具有良好的枪击功能。kaocrete 26是通用的,铸件/枪,低铁整体化。对于高达2600°F(1427°C)的应用,它结合了良好的体积稳定性和低成本。kaocrete 28-Li是一种通用,铸造/枪,低铁整体式,其中包含中间纯钙铝酸盐水泥。对于高达2800°F(1538°C)的应用,它是高温应用的经济选择。kaocrete 30是3000°F(1649°C),60%氧化铝整体化,设计用于高强度的高强度应用,该温度最高3000°F(1649°C)。仅专为铸造应用而设计,尤其适用于预铸造燃烧器块。kaocast是68%的氧化铝铸/枪难治性单片,可承受高达3000°F(1649°C)。它在高温下具有出色的体积稳定性。许多炉子操作员选择高级服务的高木出,其中工作温度高达3000°F(1649°C)。kaocrete 32厘米是3200°F(1760°C),铸造等级,难治性单片,氧化铝含量为70%。它具有出色的体积稳定性和高强度。
gtbi.net › 上传 › 2020/12 › 06-... PDF 2020 年 12 月 6 日 — 2020 年 12 月 6 日 算法在准确性和可靠性方面,欧洲空间数据 ... 数字机载摄像机系统(Cramer, 2010)由德国... 14页