拷贝数变体(CNV)在遗传性疾病和癌症的分子发病机理以及正常的人间变异中起着重要作用。但是,它们仍然很难在主流测序项目中识别,尤其是涉及外显子组测序,因为它们通常发生在非针对分析的DNA区域中。为了克服这个问题,我们开发了非高峰,这是一种用户友好的CNV检测工具,该工具以denoising方法为基础,并且使用“''target''DNA读取,通常通过测序管道来丢弃它。我们根据96种癌症的靶向测序以及来自三种不同人群的遗传性视网膜疾病的个体的130个个体进行了基准测试。对于两组数据,非高峰均表现出出色的性能(> 95%的灵敏度和> 80%的特定峰与实验验证),可在仅检测单独的硅数据中的CNV,这表明其对分子诊断和遗传研究的直接适用性。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
对象检测在各种自主系统中至关重要,例如监视,自动驾驶和驾驶员的稳定性,通过识别行人,车辆,交通信号灯和标志来确保安全。然而,诸如雪,雾和雨等不利天气条件构成了挑战,具有检测准确性,冒险发生事故和大坝。这清楚地表明了在所有天气条件下都起作用的强大观察检测解决方案的必要性。我们采用了三种策略来增强不利天气中的基于深度学习的对象检测:对全球全天候图像进行培训,对图像进行培训,并具有合成的增强天气噪声,并将对象的变形与不利天气图像denosistighting进行整合。使用分析方法,GAN网络和样式转移网络产生合成天气噪声。我们使用BDD100K数据集中的真实世界全天候图像和用于评估未见现实世界的不利天气图像的评估,通过训练对象进行分割模型比较了这些策略的性能。通过降级现实世界的不利天气图像以及对物体检测的结果和原始嘈杂图像的结果进行了评估,从而评估了不利天气。我们发现,使用全天候现实世界图像训练的模型表现最佳,而对对象检测进行对象检测的策略则表现最差。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
可穿戴机器人上肢矫形器 (ULO) 是辅助或增强用户上肢功能的有前途的工具。虽然这些设备的功能不断增加,但对用户控制可用自由度的意图的稳健和可靠检测仍然是一项重大挑战,也是接受的障碍。作为设备和用户之间的信息接口,意图检测策略 (IDS) 对整个设备的可用性具有至关重要的影响。然而,这方面及其对设备可用性的影响很少根据 ULO 的使用环境进行评估。进行了范围界定文献综述,以确定已通过人类参与者评估的应用于 ULO 的非侵入式 IDS,特别关注与功能和可用性相关的评估方法和发现及其在日常生活中特定使用环境的适用性。共确定了 93 项研究,描述了 29 种不同的 IDS,并根据四级分类方案进行了总结和分类。与所述 IDS 相关的主要用户输入信号是肌电图 (35.6%),其次是手动触发器,例如按钮、触摸屏或操纵杆 (16.7%),以及上肢节段的残余运动产生的等长力 (15.1%)。我们确定并讨论了 IDS 在特定使用环境中的优缺点,并强调了在选择最佳 IDS 时性能和复杂性之间的权衡。通过调查评估实践来研究 IDS 的可用性,纳入的研究表明,主要评估了与有效性或效率相关的客观和定量的可用性属性。此外,它强调了缺乏系统的方法来确定 IDS 的可用性是否足够高以适合用于日常生活应用。这项工作强调了针对用户和应用程序选择和评估用于 ULO 的非侵入式 IDS 的重要性。对于该领域的技术开发人员,它进一步提供了有关IDS的选择过程以及相应评估协议的设计的建议。
摘要。我们的生活现在围绕社会交流,并且由于阿拉伯文本非常复杂并且包含了许多方言,因此在阿拉伯社交媒体上很难识别出令人反感的语言。本文研究了机器学习模型的实施。使用了选择的分类器,包括决策树,支持向量机,随机森林和逻辑回归。在实验中使用了包含4505个推文的“ ARCYBC”数据集,以评估机器学习模型的性能。根据实验的结果,使用更多运行可以增强机器学习模型的性能,尤其是在精度和召回率方面。随着更多的运行,决策树(DT)和随机森林(RF)分类器显示出更好的回忆和精度,但是DT分类器显示出更好的精度。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
●在Milano-Bicocca和Ciemat中测试的HD-XA PDE●相同的sipms(在CIEMAT和MIB之间交换),但不同的WLS栏●这些四个配置在Protodune-HD NP04中同样表示,并且在数字和位置W.R.T.中平衡。横梁,进行公平比较●跨言论校正
