○攻击者知道目标是一个控制系统,因此量身定制攻击策略,目的是损害控制下的身体系统○尽管物理攻击已经闻名,但现在的网络攻击已经越来越多地被剥削,因为它们便宜,因为它们的范围很长,它们的范围很长,并且很容易复制和协调,但实际上没有攻击,
许多基于机器学习的轴突追踪方法依赖于带有分割标签的图像数据集。这需要领域专家的手动注释,这需要大量劳动力,并且不适用于以细胞或亚细胞分辨率对半球或整个脑组织进行大规模脑映射。此外,保留轴突结构拓扑对于理解神经连接和大脑功能至关重要。自监督学习 (SSL) 是一种机器学习框架,允许模型在未注释的数据上学习辅助任务,以帮助完成监督目标任务。在这项工作中,我们提出了一种新颖的 SSL 辅助任务,即为面向拓扑的轴突分割和中心线检测的目标任务重建边缘检测器。我们使用小鼠大脑数据集对三个不同的 SSL 任务进行了 3D U-Nets 预训练:我们提出的任务、预测排列切片的顺序和玩魔方。然后,我们在不同的小鼠大脑数据集上评估了这些 U-Nets 和基线模型。在所有实验中,针对我们提出的任务进行预训练的 U-Net 分别将基线的分割、拓扑保留和中心线检测提高了 5.03%、4.65% 和 5.41%。相比之下,切片排列和魔方预训练的 U-Net 并没有比基线有持续的改进。
将进行测试以确定哪些传感器可以快速、准确且一致地检测高浓度的目标成分。现场和实验室测试将包括使用不同类型的预处理工艺批量测试多个废水样品,以及使用第三方实验室测试验证结果等元素。除了传感技术外,该团队还将寻求将该技术与当前基础设施相结合。为实现这一目标,该团队将与 NESDI 传感器接口和仪器监控 (SIIM) 图形用户界面 (GUI) 项目团队合作。SIIM GUI 技术提供了与常见工业控制系统 (ICS) 接口的框架,并将为该项目将开发的传感系统提供遥测、GUI 和数据网络。
对财务报表欺诈的检测仍然是监管机构,投资者和组织致力于为财务报告中的透明度和准确性而关注的关键问题。本研究探讨了机器学习技术以增强财务报表欺诈的识别,重点是集成会计信息和公司治理指标。通过利用先进的算法和数据驱动的方法,该研究旨在发现财务报表中欺诈活动的模式和异常。该研究采用了一个全面的数据集,其中包括历史财务记录和治理指标,应用了各种机器学习模型,例如决策树,支持向量机和神经网络。这些模型的性能是根据准确性,精度和召回来评估的,以确定它们在区分欺诈和非欺骗性财务报表方面的有效性。这些发现突出了机器学习以改善欺诈检测过程的潜力,为会计数据和治理结构在减轻财务风险中的作用提供了宝贵的见解。这项研究有助于开发更强大和自动化的系统以进行欺诈检测,从而提高财务报告和公司治理实践的可靠性。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE