摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
关于贾坎德邦中央大学,兰奇尼中央大学(CUJ)是根据2009年《中央大学法》建立的,其明确的愿景是先驱当代教育计划,并提高了最先进技术的研究。提供各种计划,包括5年综合(UG/PG),研究生和博士学位。各个学校和部门的课程,Cuj仍然处于教育创新的最前沿。Cuj的教职员工在课程中拥有灵活性并促进了强大的研究合作,获得了国家和国际认可,获得了享有声望的奖学金,项目资金和荣誉。他们通过教学和咨询公司积极为政府,公共和私营部门做出贡献,并丰富了学术界和工业。cuj对卓越的承诺反映了印度政府MHRD NIRF的印度前300家学院的一致排名。在2020年,泰晤士报高等教育在全球前1000个机构中承认了Cuj,强调了其国际地位和学术实力。位于兰奇(Ranchi)蓬勃发展的Smart City中,Cuj的New Campus在坎克(Kanke)的Cheri-Manatu占地510英亩,提供了一种有利于学习和研究的环境。最初的校园坐落在兰奇(Ranchi)郊区Brambe的CTI校园的宁静45英亩的景观中,无缝地将教室和旅馆与自然环境整合在一起。有关Cuj,Ranchi的更多信息,包括录取和学术课程,请访问其网站http://cuj.ac.in/。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
量子点(QD)在液晶(LC)培养基中的分散可以有效地修改其介电和电光特性,这些特性在基于LC的显示以及非放置应用程序中很有用。在这里,我们报道了钙钛矿量子点(PQD)掺杂对列液晶(NLC)材料的介电性能的影响,即Zli-1565在其整个列和各向同性相。纯NLC的介电参数及其具有PQD的复合材料(0.1 wt。%,0.25 wt。%和0.5 wt。%)。与纯NLC相比,由于移动离子密度的增长,复合材料的介电介电常数(ɛʹ)和介电损耗(ɛʺ)的值增加。纯NLC的损耗因子(tanδ)的光谱峰随着PQD的添加向高频区域移动。此外,还评估了纯NLC和0.25 wt。%PQDS-NLC复合材料的温度依赖性介电参数(即最佳浓度)。此外,还评估了纯样品和0.25 wt。%复合材料的介电性各向异性和阈值电压。与纯净NLC相比,这里要注意的一点是,与纯NLC相比,清除温度(T n-I)的复合材料的清除温度(T N-I)减少了4°C。在这种PQDS-NLC复合材料上获得的结果可用于具有可调介电特征的基于NLC的电气设备。
摘要 - 许多研究表明,在大气压力(也称为“冷大气等离子体”(CAP))处的非平衡放电有效地去除各种材料表面的生物污染物。最近,由于其产生的化学和生物活性自由基,CAP已迅速作为微生物清洁,伤口愈合和癌症治疗的技术,统称为活性氧和氮种(RONS)。本文回顾了与称为介电屏障排放(DBD)的一种有关的研究,该研究已广泛用于用微生物处理材料,以进行静脉化,消毒和去污染。为了推动在冷大气血浆应用中的研究,本综述讨论了屏障排放的各种类型和配置,反应性物种和其他DBD-CAP剂的作用以及其他导致其抗菌功效的DBD-CAP剂,其中一些DBD-CAP过去的过去研究专门在表面上以及DBD-CAP Tech-Tech-Tech-nology的出现应用。我们的审查表明,由DBD产生的非热/平衡等离子体可以对材料进行灭菌或消毒,而不会造成任何热损害或环境污染。
摘要:我们研究了由传输矩阵形式主义中微波区域内的二循环(A)和等离子体(P)材料组成的多通道过滤器的透射率。在应用磁场的影响下研究了提出的过滤器的两种构造:(1)包含空气包围的(a / p)N单位细胞的周期性结构,以及(2)引入第二个电端材料(d),该材料(D)作为A(d)的缺陷层(ap)n / 2 /2 / d / d / d / d / d / 2 Struc-2 Struc-2 Struc-2 Struc-2 Struc-2 Struc。我们的发现表明,在周期性的情况下,透射率的谐振状态随数n的数量增加;然而,观察到的蓝色和红移取决于施加的磁场的强度和方向。我们提出了透射系数的轮廓图,这些图显示了入射角对光子带隙的偏移的影响。此外,我们发现缺陷层的引入会产生额外的共振状态,并将中心共振峰合并为共振的小键。此外,我们表明,可以通过增加单位单元格数N并增加插入的缺陷层的宽度来调节共振峰及其位置的数量。我们提出的结构可以使用在微波区域中运行的磁化等离子体材料来设计新型的光子过滤器。
菠萝以其美味的味道和营养价值而闻名,以核心,叶子和皮肤的形式产生大量废物,从而导致每年大量的积累。由于其生产的增加和潜在的环境污染,菠萝废物的有效处理已成为一个关键的挑战。本文的目的是通过将菠萝废料衍生成新的介电复合材料来挥发自然纤维。通过使用设计专家软件的优化技术实现了介电复合材料的制造过程,从而导致了值得注意的发现。然后,根据其介电性值和元素组成分析了制造材料的特性。使用矢量网络分析仪(VNA)方法测量新制造的介电材料的介电常数,而其元素组成是使用能量分散性X射线(EDX)光谱进行表征的。在本文中分析了元素组成与新制造的复合材料的介电值之间的相关性。结果,当介电复合材料由76.02%碳和22.61%的氧气组成时,获得了最高的介电常数(4.08)。相反,当材料碳含量降低到69.32%,其氧含量增加到29.81%时,该材料表现出较低的介电率值(2.87)。这种结果强调了碳在吸收和存储电磁信号中的关键作用,从而影响了材料的介电特性。总而言之,本文揭示了用于废菠萝叶的开创性用途,展示了它们的碳含量如何显着影响所得的介电复合材料的介电特性。例如,这种创新的环保材料为电子设备(例如PCB,天线和传感器)中不可回收的介电材料提供了可持续的替代方案。