电子带结构,尤其是导带尾部处的缺陷状态,主导电子传输和在极高的电场下介电材料的电降解。然而,由于在检测到极高的电场的电传导时,即介电的挑战(即预损伤),介电带中的电子带结构几乎没有得到很好的研究。在这项工作中,通过现场预击传导测量方法探测聚合物电介质纤维的电子带结构,并与太空电荷限制 - 电流光谱分析结合使用。根据聚合物电介质中的特定形态学障碍,观察到具有不同陷阱水平的导带处的缺陷状态的指数分布,实验缺陷态也表明,与密度函数理论的状态密度相关。这项工作中所证明的方法桥接了分子结构确定的电子带结构和宏电导行为,并高度改进了对控制电崩溃的材料特性的高度改进,并为指导现有材料的修改以及对高电气纤维应用的新型材料的探索铺平了一种方式。
实施5G毫米波(MM-WAVE)无线网络需要重新设计RF前端组件(例如天线,过滤器和放大器),以便它们可以比前几代更高的频率操作[1]。这些设备通常是使用介电底物材料和金属导体制造的,需要在新的频带上表征这些设备。5G应用的介电常数和低损失的材料[2]是可取的。较低的介电构造可以通过基板更快地信号传播,从而允许更高的数据速率和较低的延迟。此外,低损耗切线有助于补偿MM波频率上本质上较高的衰减,从而确保通过设备可接受的传播损失[3],[4]。然而,材料的介电特性表现出由固有的松弛机制引起的频率依赖性。这些原子尺度过程会导致跨电磁频谱的共振峰和分散效应。在固体材料中,分子偶极子的偶极弛豫倾向于在MHz频率中发生,而在THZ区域中发现了晶格离子的振动共振[5],[6]。与5G设备相关的GHz范围中的介电行为位于中间区域,该区域可能分别受到MHz和THz频率的偶极和离子弛豫的尾巴的影响。因此,准确的宽带特征对于完全捕获这些基本物理过程引起的介电特性的频率变化至关重要。仅测量低频响应可能会提供材料适合5G应用的不完整图片。但是,已发表的研究有限
细胞因子释放综合征(CRS)是重症患者死亡的重要原因之一[1,2],它是指由于过度激活或失控的免疫系统产生的极端免疫反应,该系统在病毒入侵时会释放出大量细胞因子。细胞因子是一类由免疫细胞分泌的小分子可溶性肽蛋白。临床研究发现,COVID-19重症监护患者的血清促炎细胞因子水平显着升高。白介素2(IL-2)是典型的细胞因子之一[3,4]。在发生严重CRS之前检测患者血清样品中与CRS相关的细胞因子并在炎症反应中进行介入是临床诊断的重要组成部分,这是正确预先确定的治疗指南的重要指南。由于血清中的细胞因子浓度低(PM范围),因此需要高敏性生物传感器才能检测。Terahertz(THZ)超材料生物传感器是一种无损,无标签,高度敏感的传感器,用于PM级细胞因子检测。但是,大多数典型的超材料是金属基阵列结构,而设备的低Q因子限制了由于高金属损耗而引起的传感器的灵敏度。与金属结构的超材料相比,介电的超材料的损失较低,Q因子较高,并且可以用作THZ超材料生物传感器,以显着提高传感器的灵敏度和检测限。Yang创造性地报道了中的基于硅的双间隙拆分结构Yang创造性地报道了考虑了FANO共振,以进一步改善设备的Q因子,例如,基于硅纳米条[5],不对称 - 切割线超材料[6]的介电FANO共振结构[6],以及连续的全dielectric Boundic boundic boundic body态[7]。
短波红外线(SWIR)是基于元图的纳米光谱中电磁频谱的一个不流失的部分,尽管它在传感和成像应用中具有战略意义。这主要归因于缺乏在此范围内量身定制光线与形式相互作用的材料系统。在此处,该限制得到了解决,并在SWIR频率下启用了偏振诱导的偏振诱导的FANO共振控制。该平台由2D SI/GE 0.9 SN 0.1 CORE/SHELL NANOWIRE ARRAY上的硅晶片上的阵列组成。通过调整光极极化,可以表明,由于电动和磁性偶极子竞争中引起的FANO共振,可以对跨表面的反射进行有效的设计。在高索引纳米线阵列中光学诱导的偶极子的干扰是额外的自由度,以量身定制方向散射和光流,同时启用急剧极化的谐振。在纳米传感器中利用了这种固定性,可在周围培养基的折射率上有效检测10-2的变化。
摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
图1。多价逻辑薄膜元素带有加密。(a)蒸发诱导的自组装(EISA)CNC膜上iTO/玻璃基板上。通过精确降低NaCl溶液,CNC的手性螺距通过相对湿度控制(比例尺为1mm)调节。(b)由光子带隙(相对湿度,H和盐浓度,S)和光子能量(波长,W和极化状态,P)触发的生物多值逻辑系统的图形符号,并通过以下转换后的字母字母来解码电信号。(c)基于集成电路的光通信启用了主动手性生物介电层。特定的输入提供了光学通信,并通过在系统中调整H通过加密传输“制造”信号。
Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Aaniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,BRETT HULL1,BRETT HULL1,C SCOTT HULL1,C,C,C,C,SCOTT ALLEN1,D. U1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Hull1,C,Scott Allen1,d和John W. John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A* Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,d,以及 John W. Palmour1,e Daniel J. Lichtenwalner1,a*,Sei-Hyung Ryu1,b,Brett Hull1,c,Scott Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,B,Brett Hull1,C,Brett Hull1,C,Scott Hull ,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D,D,D。 Our1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和约翰·W·帕尔默1,e
•易于制造 - 磁带提供即时键,无需固定时间。•耐用性 - 某些磁带迅速将边缘缠绕而不会撕裂,从而避免浪费和返工。合格的溶液可用于复杂的几何形状。•安全性 - 带有火焰的解决方案的磁带会议ul®94V-0标准。它们可以结合电绝缘成分,以提高介电强度。•热性能 - 胶带固有的薄度,对热流的阻力最小。
摘要:本研究从金属栅极面积、介电薄膜几何形状和厚度效应等方面研究了低介电常数 (low- k ) 材料的金属-绝缘体-半导体 (MIS) 电容器结构的可靠性特性。研究使用了两种低 k 材料,即致密和多孔低 k 薄膜。实验结果表明,与致密低 k 薄膜相比,多孔低 k 薄膜的击穿时间更短、威布尔斜率参数和电场加速因子更低、厚度依赖性击穿更弱。此外,还观察到介电击穿投影模型的偏差较大,且各个区域合并的击穿时间分布呈现单个威布尔图。研究还指出,不规则形状的金属栅极 MIS 电容器中多孔低 k 薄膜的介电击穿时间比方形和圆形样品中更长,这与持续电场的趋势相悖。因此,不规则形状的样品中存在另一种击穿机制,需要在未来的工作中进行探索。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。