新颖的电介质材料:打破吉吉尔兹(Gigahertz)障碍罗杰·泰兹(Roger Tietze),日元贷款Nguyen,Mark Bryant,Dave Johnson Huntsman Corporation The The Woodlands,Texas,Dexas,用于许多关键的电子应用,需要比Epox和其他传统材料表现出更好的介电系统,这些介电系统具有更好的电气性能。在当今世界各地开发的高级电信,高速电子和微波设备以及辐射层和其他产品中,制造商依靠Teflon®,Cyanate Esters和Cyanate Ester/Epoxy Coxy Blend等材料来满足其性能要求。但是,这些材料具有缺点,可以使它们在某些苛刻的应用中成本昂贵且难以用作介电。我们有一个活跃的研究计划,可以开发具有低DK/DF特性的新型新型热固性聚合物。本文重点介绍了其中一种材料作为PWB多层的基础树脂的测试。该新系统也可能在本研究范围之外具有应用程序。1.0简介有机聚合物在复合PWB的制造中起着非常重要的作用。在用于构建复杂电子的材料中是环氧树脂,酚类,二甲酰亚胺和氰酸酯。这些聚合物表现出所需的电绝缘,热性能,耐化学性和所需的机械强度。聚合物作为PWB树脂系统表现能力的两个最重要的度量是介电常数[DK]和耗散因子[DF]。介电常数决定了PWB中电子信号的速度。DF表示电路中信号的介电损耗。两个值都会影响PWB的大小和信号质量。另外,铜导体的尺寸和PWB上的绝缘空间还受DK/DF值的影响。低DK和DF特性将导致PWB中功率损失较低的信号速度更快。因此,具有低DK/DF特性的树脂支持具有近线/导体空间的小型PWB的生产。目前正在研究PWB的Huntsman材料之一是一种新的苯唑嗪。苯佐昔嗪作为产品家族是复杂电子产品的良好候选者,因为它们是一种非卤代系统[没有氯或溴]Ö的高玻璃过渡值Ö表现出低的水分吸收性Ö具有易燃性的耐受能力,它比Epox更好,尽管这种类别的产品均具有良好的电气性能,并且具有良好的电气属性,并且在所有dk and df中都具有df/df/df/df的df/df not/df。当这些材料在≥1GHz的测试时,它们的DK/DF值大大增加。因此,这些系统难以用于最近以较高频率运行的电子产品,我们开发了一种具有电气性能的新实验材料,该材料在Gigahertz范围内保持稳定。2.0一般苯唑嗪化学分配苯酚,甲醛和胺的苯唑嗪化合物的合成已被几组1-5详细研究。
应用指南 PH-745 应保存在密闭容器中,并置于室温下备用。如果材料需要长期储存,或者容器反复长时间敞开,则应在使用前测试粘合剂的固体百分比。建议的混合起始比例为 55 至 70 重量份荧光粉对 100 重量份 PH-745。混合粘合剂时,请勿使用高速、高剪切混合方法,因为这可能会损坏荧光粉的表面。建议的混合方法是将荧光粉添加到 PH-745 中,用非金属刮刀轻轻混合,然后将密闭容器放在罐辊上,以低速(<100 rpm)搅拌 12 至 24 小时。请勿在罐中添加任何研磨介质,例如金属或陶瓷珠。混合罐的填充量不应超过 2/3,以便在罐辊上实现最佳混合。混合后,测试打印可以确认荧光粉的分散情况。如果材料混合后放置很长时间,可以通过
摘要:介电陶瓷电容器具有功率密度高、充放电速度快、耐疲劳性能好、高温稳定性好等优点,被认为是全固态脉冲功率系统的有前途的材料。本文从化学改性、宏微观结构设计和电性能优化的角度研究了线性介电体、弛豫铁电体和反铁电体的储能性能,总结了铅基和/或无铅体系陶瓷块体和薄膜的研究进展。最后,提出了未来脉冲功率电容器储能陶瓷的发展前景。关键词:储能陶瓷;介电体;弛豫铁电体;反铁电体;脉冲功率电容器
图3-光学照片显示了复合样品的弯曲性和宏观外观(a)。Representative scanning electron microscopy (SEM) images at magnifications of 400x and 5000x of the cross-section of samples PUA0 (b), PUA20_100 (c), PUA40_50 (d), PUA40_100 (e), PUA40_200 (f), PUA60_100 (g), PUA65_100 (h).
过去十年,量子计算和信息处理因比经典算法具有更快的加速性能而引起了人们的广泛关注。从数学上讲,一个整体的量子操作可以看作是在构建量子网络中对输入量子比特进行的一系列幺正变换。实现量子计算的物理系统有很多,如离子阱、约瑟夫森结、氮空位中心等[1]。在这些物理系统中,线性光学方案最具吸引力,因为量子信息载体是光子,而光子可能不存在退相干[2,3]。当对输入光子进行量子计算时,基本量子比特通常由两个正交模式或两个偏振通道中的单光子来准备。为了在量子信息处理中产生所需的演化,每个相应的量子比特操作由一些简单的光学元件或它们的组合来实现,如分束器、移相器和波片[4,5]。单量子比特操作属于 U(2) 变换类,此类变换已在理论上进行了讨论,并通过这些元件的组合在实验中实现了 [2–6]。然而,使用传统线性光学元件的物理实现似乎体积庞大,难以集成到物理系统小型化,因此非常希望简化当前的光学实现。另一方面,超表面(单层或多层超材料结构)可以平坦、紧凑地实现经典光学区域中不同光学元件的小型化 [7,8]。由于在制作任何量身定制的共振超材料结构时都具有丰富的自由度,它们已经应用于需要复杂自由度的不同场景,包括全息图 [9,10]、光学平面透镜 [11,12]、斯托克斯偏振仪 [13–15] 和模拟计算 [16–18]。具体来说,超材料已用于执行信息或图像处理。通过将超材料像素化为一组离散结构,这些“数字超材料”可进一步用于执行不同的数学运算,如傅里叶变换和微分[15-22]。扩展到量子光学领域,超表面可用于替代传统的线性光学元件
研究了 O 2 等离子体处理对 Ba 0 : 7 Sr 0 : 3 TiO 3 (BST) 薄膜电特性和介电特性的影响。将沉积态和退火态的 BST 薄膜暴露于 O 2 等离子体后,BST 薄膜的漏电流密度可以得到改善。通常,在施加 1.5 V 电压下,与未经等离子体处理的样品相比,漏电流密度可以降低 3 个数量级。研究发现,等离子体处理改变了表面形貌。BST 薄膜的电容降低了 10% 至 30%。等离子体处理样品的漏电流密度的改善和介电常数的降低可归因于 BST 薄膜中碳污染的减少。时间相关电介质击穿 (TDDB) 研究表明,所有样品在 1 V 电压偏置下均有超过 10 年的使用寿命。© 2000 Elsevier Science Ltd. 保留所有权利。
摘要:提出了专门用于植入性心动过缓起搏器的硅3D阵列电容器。电容器的集成3D形是通过在硅晶片内制造高比率微孔阵列设计的。这种特殊的形状增强了介电层的发达表面,导致高电容密度,对于在这种生物医学系统中应用至关重要。基于在原子力显微镜上进行的纳米特征的过程控制,该过程用于三个主要的关键制造步骤:介电构象,介电综合性,掺杂的磷磷酸化的多晶硅孔孔孔和掺杂型的均匀性。在沉积介电层的化学启示之后,AFM地形证明了层的整合性和填充的有效性。此外,通过记录空间延伸和载体浓度,通过电扫描电容模式检查电极掺杂的描述。宏观特征显示,有关施加的电压和温度,3D模式的硅电容器的稳定性。最后,一个高积分解决方案,其中3D电容器被嵌入并夹在多层打印电路板中,通过使用薄的环氧层层次的预处理片暴露在多层印刷电路板中。
孔隙的引入会降低低 k 薄膜的机械强度,并导致 ULSI 互连严重损坏,例如 CMP 期间的薄膜分层和/或由于封装模具树脂的热应力导致的开裂。
电介质击穿 (DB) 控制着微电子设备的故障,并且日益影响着其功能。标准成像技术基于物理结构产生对比度,难以将这一电子过程可视化。本文,我们报告了 Pt/HfO 2 /Ti 价态变化存储设备中 DB 的原位扫描透射电子显微镜 (STEM) 电子束感应电流 (EBIC) 成像。STEM EBIC 成像直接将 DB 的电子特征可视化,即电导率和电场的局部变化,具有高空间分辨率和良好的对比度。我们看到 DB 通过两个串联的不同结构进行:由电子注入产生的挥发性“软”丝;以及由氧空位聚集产生的非挥发性“硬”丝。该图在“软”和“硬”DB 之间进行了物理区分,同时适应了“渐进式”DB,其中硬丝和软丝的相对长度可以连续变化。
摘要 — 增材制造为创新天线和微波元件提供了新的可能性。为了充分发挥其潜力,必须充分利用 3D 打印技术提供的功能。3D 打印结构化电介质目前在这方面受到广泛关注。然而,表征这种晶体结构的介电性能并不容易,而且经常需要对这种性能做出假设。本文展示了在具有不同填充率的简单立方 (SC) 和面心立方 (FCC) 晶体几何中,增材制造结构化电介质的介电常数和损耗角正切的表征。将测量结果与 Maxwell-Garnett 有效介质近似预测的值以及从长波长极限的三维平面波展开法 (PWEM) 中提取的有效折射率进行了比较。