摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
本报告介绍了由环境、交通和地区部 (DETR) 资助、由国家物理实验室 (NPL) 在国家环境技术中心的支持下开展的工作,旨在测量陆上原油稳定厂的气体排放。测量是使用 BP Exploration Wytch Farm 收集站的 NPL 差分吸收激光雷达 (DIAL) 设施进行的。该站点从当地井场接收原油,稳定原油,分离液化石油气和天然气,然后通过管道出口产品。DIAL 设施用于测量站点所有区域的 VOC 受控和逸散排放。测量在 5 天内进行,从 1997 年 3 月 23 日到 1998 年 3 月 27 日。测量结果用于确定站点总排放因子的估计值为 -0.04% +- 0.005%(按质量计算)。
近十年来,人们提出了用于解决各种实际问题的量子算法,例如数据搜索和分析、产品推荐和信用评分。人们对量子计算中的隐私和其他伦理问题的关注自然而然地出现了。在本文中,我们定义了一个用于检测量子算法差分隐私违规的正式框架。我们开发了一种检测算法来验证(嘈杂的)量子算法是否具有差分隐私,并在报告差分隐私违规时自动生成窃听信息。该信息由一对违反隐私的量子态组成,以说明违规的原因。我们的算法配备了高效的数据结构 Tensor Networks,并在 TensorFlow Quantum 和 TorchQuantum 上执行,它们分别是著名机器学习平台 TensorFlow 和 PyTorch 的量子扩展。我们算法的有效性和效率得到了已经在现实量子计算机上实现的几乎所有类型量子算法的实验结果的证实,包括量子霸权算法(超出了经典算法的能力)、量子机器学习模型、量子近似优化算法和高达 21 个量子位的变分量子特征求解器。
差异隐私 (DP) [1,2] 是一个严格的数学框架,用于在分析和处理数据集的同时保留每个个体的信息。直观地说,差异隐私算法可以学习由 n 个用户组成的数据集的统计属性,但几乎不会泄露每个用户的任何信息。在处理医院数据、银行、社交媒体等敏感数据时,此类机制具有重要意义。除了隐私保护数据分析外,差异隐私还在计算机科学的其他领域找到了多种应用,如机器学习 [3、4、5、6]、统计学习理论 [7、8、9、10]、机制设计 [11]。自其推出以来,已开发出多种用于隐私数据分析设计的分析工具 [12、13、14、15]。最常见的是,这些机制利用诸如在最终输出中添加噪声或将输入随机化之类的技术。可以使用简单的工具(例如基本组合规则和后处理的鲁棒性)对由这些块构建的复杂机制进行松散的分析。然而,实际应用中隐私和实用性之间的固有权衡引发了更细化规则的发展,从而带来了更严格的隐私界限。这个方向的趋势是表明多种随机性来源放大了标准 DP 机制的保证。特别是,已经证明了子采样、迭代、混合和改组等 DP 放大结果 [16,17,18,19]。鉴于过去几十年量子计算和量子信息对计算机科学不同领域产生了重大影响,一个有趣的问题是量子和量子启发算法是否可以增强差异隐私。随着如今噪声中型量子设备 (NISQ) 的出现,这个问题变得更加重要 [20]。一方面,这些设备的噪声特性(之前也被 [21] 所利用),另一方面,量子算法的潜在能力,使得这种量子或混合量子经典机制成为差异隐私角度的一个有趣研究课题。此外,机器学习和差异隐私之间的联系表明,回答这个问题可以带来对量子机器学习能力的有趣见解。
补充信息:联邦航空管理局 (FAA) 成立了航空规则制定委员会 (56 FR 2190. 1991 年 1 月 22 日),该委员会于 1991 年 5 月 23 日举行了首次会议 (56 FR 20492, 1991 年 5 月 3 日)。在该次会议上成立了通用航空和公务飞机小组委员会,旨在向飞机认证服务处处长提供建议和推荐。FAA 考虑到:1g 联邦航空条例第 23 部分中标准和通勤类飞机和发动机的适航标准。以及联邦航空条例第 91 和 135 部分的平行规定。在 1991 年 11 月 5 日举行的第一次会议上 (56 FR 54605: 10 月 22 日), 1991 年,小组委员会成立了燃油指标工作组。具体来说,该工作组的要求如下:
作为一个数学上严格的框架,积累了丰富的理论文献,许多专家认为,不同的隐私是具有隐私数据分析的“黄金标准”。其他人则认为,尽管差异隐私是理论上清洁的表述,但它在实践中构成了重要的挑战。这两种观点都是有效和重要的。为了弥合差异隐私的诺言与其现实世界可用性之间的差距,研究人员和从业人员必须努力促进这项技术的政策和实践。在本文中,我们概述了迫切的问题,以建立可用的差异隐私和对领域的建议,例如开发风险框架以与用户需求保持一致,为不同的利益相关者量身定制沟通,以建模隐私程序的影响,并在效果上进行了效果,并在效果上进行了效果,以及效果的效果及其效果,以及效果的效果,并建立了效果的效果。差异隐私系统。
和连续扩散模型,因为SDE指定的扩散模型可以视为离散模型的连续限制(第3节),并且通过合适的时间离散化从连续模型中获得离散扩散模型(第5.3节)。观点是SDES揭示了模型的结构属性,而离散的对应物是实际的实现。本文的目的是为基于分数的扩散模型的最新理论提供教程,主要是从统计重点的连续角度来看。也将提供离散模型的参考。我们为大多数已陈述的结果绘制证明,并且仅在分析至关重要时才给出假设。我们经常使用“在适当条件”的“在适当条件下”的短语,以避免不太重要的技术细节,并保持简洁和关注点。该论文是对该领域的温和介绍,从业者将发现一些分析对于设计新模型或算法有用。在这里首次出现一些结果(例如,在第5.2、6.2和7.3节中)。由于采用了SDE公式,因此我们假设读者熟悉基本的随机演算。ØKksendal的书[50]提供了一个用户友好的帐户,以进行随机分析,并且更高级的教科书是[34,68]。另请参见[76]有关扩散模型的文献综述,以及[8]进行优化概述,并具有更高级的材料,例如扩散指导和微调。本文的其余部分如下组织。具体示例在第3节中提供了。在第2节中,我们从扩散过程的时间反转公式开始,这是扩散模型的基石。第4节与分数匹配技术有关,这是扩散模型的另一种关键要素。在第5节中,我们考虑扩散模型的随机采样器,并分析其收敛性。在第6节中,确定性采样器 - 引入了概率流,以及其应用于一致性模型。在第7节中给出了分数匹配的其他结果。总结说明和未来的指示在第8节中总结了。
神经网络在学习和控制方面表现出了巨大的力量,尤其是在学习动力学和预测动态系统的行为方面[1],[2]。在学习和控制社区近似动态行为时,尤其是稳定性和被动性时,就会有利于稳定性和被动性。执行稳定性可以使学习模型受益,尤其是在概括方面。对于非线性系统,在[3],[4],[5]中使用高斯混合模型和多个数字模型研究了学习过程中的稳定性,甚至在线性系统的情况下,它是非平凡的[6]。对于非线性系统,存在各种稳定概念,其影响不同。在学习的背景下,一个称为Contaction [7](任何一对轨迹相互收敛)的强稳定性概念最近由于其平衡 - 独立的稳定性性质而受到了很多关注。对于离散时间设置,[8],[9],[10]已经开发了收缩,逐渐被动和耗散性神经动力学。在[11]中可以找到连续的时间对应物。[9],[11]的好处是他们的直接(即稳定模型的参数化参数化,使培训变得容易。但是,一个限制是它们在国家独立的二次度量标准方面执行收缩,从而限制了灵活性。用于学习稳定性弱的动态系统(例如,Lyapunov稳定性W.R.T.特定的平衡)通常需要应用保留相似稳定性特性的模型。稳定神经差异方程的关键成分是神经Lyapunov功能。从[12]和佩雷尔曼(Perelman)[13]的庞加罗猜想分辨率,所有lyapunov函数均具有对单位球的同型集合。这建议搜索候选Lyapunov