摘要 — 多通道校准对于检测移动目标并准确估计其位置和速度至关重要。本文介绍了一种快速有效的沿轨多通道系统校准算法,特别是针对时空自适应处理 (STAP) 技术。所提出的算法校正了接收通道的相位和幅度偏移,还考虑了沿斜距和方位角时间的多普勒质心变化(例如由大气湍流引起)。多普勒质心变化的知识对于准确的杂波协方差矩阵估计尤其重要,这是 STAP 有效抑制杂波所必需的。重要的校准参数和偏移量直接从距离压缩训练数据中估计。基于使用 DLR 机载系统 F-SAR 获取的真实多通道 X 波段雷达数据对所提出的算法进行了评估,并与最先进的数字通道平衡技术进行了比较。实验结果表明,所提出的校准算法在实时应用中具有潜力。
单元 I 蜂窝概念系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、改善蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。
1 维也纳技术大学微电子研究所 Christian Doppler 半导体器件和传感器多尺度过程建模实验室,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;bobinac@iue.tuwien.ac.at (JB);reiter@iue.tuwien.ac.at (TR) 2 维也纳技术大学微电子研究所,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;piso@iue.tuwien.ac.at (JP);klemenschits@iue.tuwien.ac.at (XK) 3 Global TCAD Solutions GmbH,Bösendorferstraße 1, Stiege 1, Top12, 1010 Vienna, 奥地利;o.baumgartner@globaltcad.com (OB); z.stanojevic@globaltcad.com (ZS);g.strof@globaltcad.com (GS);m.karner@globaltcad.com (MK) * 通信地址:filipovic@iue.tuwien.ac.at;电话:+43-1-58801-36036 † 本文是我们发表在 2022 年 9 月 21 日至 23 日在希腊科孚岛举行的第四届微电子器件和技术国际会议 (MicDAT) 论文集上的论文的扩展版本。
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53
到 2017 年底,欧洲航天局 (ESA) 将发射大气激光多普勒仪器 (ALADIN),这是一种在 355 nm 下工作的直接检测多普勒风激光雷达。ALADIN 机载演示器 A2D 是使用真实大气信号验证和优化 ALADIN 硬件和数据处理器进行风检索的重要工具。为了能够验证和测试 ALADIN 的气溶胶检索算法,需要一种从 A2D 检索大气后向散射和消光轮廓的算法。A2D 采用直接检测方案,使用双法布里-珀罗干涉仪测量分子瑞利信号,使用菲索干涉仪测量气溶胶米氏回波。信号由累积电荷耦合器件 (ACCD) 捕获。这些规范使得信号预处理中的不同步骤成为必要。本文描述了从 A2D 原始信号中检索气溶胶光学产品(即粒子后向散射系数 β p 、粒子消光系数 α p 和激光雷达比 S p )所需的步骤。
肝功能,电解质和凝结功能正常。全身淋巴结超声超声显示出多个肿大的淋巴结,皮质和髓质之间的划分不明确,皮层增厚,髓质减少,髓质减少,右颈椎II区域中最大的淋巴结,测量大约23mm的11mm 11mm 11mm 11mm 11mm,可通过I-LeLevel血液流动信号检测到I-Lele vell Flow Signal of Coly Doppler Flowing(CDFFI)。左侧最大的淋巴结位于左子宫颈II区域,测量约28.4mm15.4mm,并通过CDFI检测到I级血流信号。在腹股沟区域没有发现明显的异常淋巴结肿大。外周血涂片显示出升高的白细胞计数,中性粒细胞比率降低,淋巴细胞比率增加和30%非典型淋巴细胞。病理结果表明EBV+ T细胞淋巴增生性疾病。
使用实时3维体积多普勒echocardiog echocardiog-raphy-raphy-raphy:在体外和临床验证中,通过自动的3维峰和近端近端的异伏特式表面积和中风量技术来定量慢性功能性二尖瓣反理量。cir-diovasc成像。2013; 6:125 - 133。2013; 6:125 - 133。
1. 理解蜂窝通信概念 2. 研究移动无线电传播 3. 研究无线网络不同类型的 MAC 协议 UNIT -I 蜂窝概念-系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、提高蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。第四单元均衡和分集:介绍、均衡基础知识、训练通用自适应均衡器、通信接收器中的均衡器、线性均衡器、非线性均衡器
摘要:NASA 戈达德太空飞行中心 (GSFC) 的 W 波段 (94 GHz) 云雷达系统 (CRS) 已全面更新为现代固态和数字技术。该 W 波段 (94 GHz) 雷达在 NASA ER-2 高空飞机上以天底指向模式飞行,提供云和降水的极化反射率和多普勒测量。本文介绍了升级后的 CRS 的设计和信号处理。它包括硬件升级 [固态功率放大器 (SSPA) 发射器、天线和数字接收器] 的详细信息,包括新的反射阵列天线和固态发射器。它还包括算法,包括内部环回校准、使用体积反射率和海洋距离积分反向散射之间的直接关系的外部校准,以及改进的交错脉冲重复频率 (PRF) 多普勒算法,该算法对展开误差具有很强的抵抗力。提供了通过最近的 NASA 机载科学任务升级的 CRS 获取的数据样本。
解决方案:频率范围从 10 GHz 到 200 GHz 以上的多频(多普勒)雷达的组合可以表征从重降水颗粒到小尺寸冰晶的特征。加入 G 波段(1.5 毫米)对三个领域非常有益:边界层云、卷云和中层冰云以及降雪。