Emiconductor纳米晶体(NCS)是纳米级半导体中最广泛的研究,现在我们有一个固体的理论基础,使我们能够理解其大多数电子,光学和传输特性。大约四十年前,在S. I. Vavilov State Optical Institute和A. F. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q.同时,但在一半的世界之外,新泽西州默里山的贝尔实验室的路易斯·布鲁斯(Louis Brus)正在研究液体胶体中的半导体颗粒。这两条研究线在地理上和铁幕上分离,最终导致了两个小组的独立发展NC的独立发展以及对大小依赖性光学特性的理论解释。1 - 15直到1984年,美国人才得知俄罗斯人的e orts,当BRUS阅读Ekimov Papers的翻译并写信给作者时。在研究人员可以在铁幕倒塌以及在俄罗斯引入格拉斯诺斯特和Perestroika之后开始进行密集的信息交流之前,还必须再过5年。尽管半导体玻璃和半导体胶体分散体之间存在明显的差异,但它显示了
摘要 - 以红毛丹和香兰叶为碳源,通过水热和微波处理合成碳量子点 (CQDs),这是一种简便且环保的方法。本研究介绍了合成方法对 CQDs 光学和物理性质的影响,以及通过 Cu 2+ 检测 CQDs 的传感活性。通过分析发现,CQDs 的带隙能量范围为 2.52 至 3.51 eV。CQDs 溶液表现出明显的荧光特性,在波长约为 405 nm 的紫外 (UV) 光照射下可以检测到明亮的青色荧光。使用水热法从香兰叶和红毛丹叶合成的 CQDs 的量子产率 (QY) 值分别约为 2.46% 和 2.70%。 FT-IR 分析记录了 CQDs 表面现有的功能团为羟基和羰基,可作为检测 Cu2+ 的吸附位点。此外,这项研究表明,使用热液法从香兰叶和红毛丹叶中发射的 CQDs 在检测 Cu 2+ 的存在时表现出最佳的关闭行为,最低检测限 (LoD) 低至 123 µM。关键词——碳量子点 (CQDs);叶子;热液;微波;铜离子。提交:2021 年 1 月 19 日更正:2021 年 4 月 4 日接受:2021 年 4 月 25 日 Doi:http://dx.doi.org/10.14710/wastech.9.1.1-10 [如何引用本文:Kasmiarno, LD, Fikarda, A., Gunawan, RK, Isnaeni, Supandi, Sambudi, NS。 (2021)。碳量子点(CQds)来自
摘要:作为量子信息处理和量子通信的重要元素,基于固态平台的高效量子存储器对于实际应用至关重要,但仍是一个挑战。本文提出了一种基于具有Rashba自旋轨道耦合(SOC)的量子点(QDs)实现单光子高效可控存储和路由的方案。我们表明QDs中的SOC可以为单光子传播提供灵活的电磁感应透明(EIT)结构,并且可以通过EIT实现单光子波包的存储、检索和路由。此外,我们证明了QDs中单光子波包的传播损耗可以通过弱微波场大大抑制,从而可以实现单光子的高效和高保真存储和路由。我们的研究为基于具有SOC的QDs的光子量子信息处理和传输的先进固态器件的设计开辟了一条新途径。
引言多年来,波多黎各的电力系统性能一直不佳。几十年来,由于连续的管理不善、长期腐败、猖獗的党派政治以及所需维护和资本支出的推迟,波多黎各电力管理局(“PREPA”)提供的电力服务效率低下、不可靠且价格昂贵。2017 年,PREPA 破产以及飓风玛丽亚对输配电网络造成广泛破坏后,电力系统性能低下的情况更加严重。在过去七年里,波多黎各政府付出了巨大的努力来重建和现代化电力系统;将输配电网和 PREPA 遗留发电资产的运营和管理私有化;开始为期 25 年的转型,使该岛 100% 的电力来自可再生能源;并重组 PREPA 的财务义务。然而,在 2024 年夏天,由于该岛在近年来最热的夏季之一中期遭遇轮流停电,这些电力系统改造努力似乎都失败了。事实上,一些地区的进展几乎停滞不前,更令人担忧的是,政府似乎无法找到摆脱当前困境的方法。部分问题是由于对波多黎各能源系统至少一个领域拥有管辖权的参与者数量众多。如下所示,并在本网页中更详细地说明,我们已确定至少 14 个联邦和州政府层面以及私营部门的实体对转型过程的至少一部分具有一定影响或控制权。事实证明,这些实体之间的工作协调和同步很困难,即使在 PREPA 破产和飓风玛丽亚来袭七年后,这仍然是一个挑战。
Gong,J.,Zhang,Z.,Zeng,Z.,Wang,W.,Kong,L.,Liu,J. &Chen,P。(2021)。 石墨烯量子点有助于剥落原子上的2D材料和AS -Formed 0d/2d van der waals heterojunction。 碳,184,554‑561。 https://dx.doi.org/10.1016/j.carbon.2021.08.063Gong,J.,Zhang,Z.,Zeng,Z.,Wang,W.,Kong,L.,Liu,J.&Chen,P。(2021)。石墨烯量子点有助于剥落原子上的2D材料和AS -Formed 0d/2d van der waals heterojunction。碳,184,554‑561。https://dx.doi.org/10.1016/j.carbon.2021.08.063https://dx.doi.org/10.1016/j.carbon.2021.08.063
图2。(a-c) UV-vis absorption spectra (Absorbance axis on left) and emission spectra (photoluminescence = PL axis on right) of commercial or recrystallized pure compounds 2,3-DAP (commercial), 2,7-DAP, (recrystallized), and MQA (commercial) shown as solid blue and red curves, compared to the byproducts from our synthesis captured in the low molecular mass (<500 da)透析液(点缀蓝色和红色曲线),也与参考文献中CD的光谱进行了比较。[13](虚线黑色曲线)。完全匹配了2,3-DAP和MQA光谱(<2%),而2,7-DAP由于原始透析液中存在额外的杂质而在低吸光度下显示出很小的差异(请参阅表S1)。我们的P-,O-和M-CD的吸收光谱和发射光谱如图6,具有完全不同的吸收和发射最大值和形状。
木炭的成分取决于许多因素,例如制备方法、燃烧的木材类型、水含量、氧和其他物质的功能团、地理区域、温度等。成分也可能因不同的制备方法而改变,制备方法可能使用不同的温度、氧气浓度或其他气体、处理时间、环境湿度和其他因素。木炭是一种绿色材料,含有不同量的氢和氧以及灰分和其他杂质,这些杂质与结构一起决定了它们的最终性质。木炭的大致成分可以从文献中获取,文献报告了以下以平均浓度的重量百分比表示的值 [12,13]:C = 66.9%:H = 4.4%;O = 7.6%;N = 1.3%;S = 1.1%;水分 = 7.2%;灰分 = 11.5%; Cl = 0.1%。
摘要 量子计算机规模化的一个关键挑战是多个量子位的校准和控制。在固态量子点 (QD) 中,稳定量化电荷所需的栅极电压对于每个单独的量子位都是唯一的,从而产生必须自动调整的高维控制参数空间。机器学习技术能够处理高维数据(前提是有合适的训练集),并且过去已成功用于自动调整。在本文中,我们开发了极小的前馈神经网络,可用于检测 QD 稳定图中的电荷状态转变。我们证明这些神经网络可以在计算机模拟产生的合成数据上进行训练,并稳健地转移到将实验设备调整为所需电荷状态的任务上。此任务所需的神经网络足够小,可以在不久的将来在现有的忆阻器交叉阵列中实现。这为在低功耗硬件上小型化强大的控制元件提供了可能性,这是未来 QD 计算机片上自动调整的重要一步。
量子点在 InSb 纳米线内以栅极定义,靠近 NbTiN 超导触点。随着点和超导体之间的耦合增加,传输中的奇宇称占据区域在诱导超导间隙上方和下方都变得不可辨别(被擦除)。在间隙上方,奇数库仑阻塞谷中的电导率增加,直到谷被抬起。在间隙下方,安德烈夫束缚态经历量子相变,变为奇数占有的 Kondo 屏蔽单重态基态。我们研究了在低偏置和高偏置下奇宇称状态的明显擦除在多大程度上一致。我们用数值重正化群模拟来补充实验。我们从 Kondo 屏蔽和超导之间的竞争的角度来解释结果。在擦除奇宇称机制中,量子点表现出类似于有限尺寸马约拉纳纳米线的传输特征,在偶奇点占据和偶奇一维子带占据之间形成相似性。
本文档是已发表作品的已接受手稿版本,该作品最终以 ACS Applied Nano Materials 的形式发表,版权归美国化学学会所有,由出版商进行同行评审和技术编辑。要访问最终编辑和出版的作品,请参阅 https://doi.org/10.1021/acsanm.0c03373