阿尔忒弥斯任务信息图 29 舱外活动和载人地面机动计划 (EHP) 31 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(阿尔忒弥斯航天服) 33 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(国际空间站 (ISS) 航天服) 35 舱外活动和载人地面机动计划 (EHP) – 月球地形车 (LTV) 37 载人着陆系统 (HLS) – 持续月球开发 (SLD) 39 移动发射器 2 (ML2) 41 实施阶段的阿尔忒弥斯主要项目评估 43 门户 45 门户 – 居住和后勤前哨 (HALO) 47 门户 – 动力和推进元件 (PPE) 49 载人着陆系统 (HLS) – 初始能力 51 猎户座多用途机组人员运载火箭(Orion) 53 太阳能电力推进系统(SEP) 55 太空发射系统(SLS)Block 1B 57 挥发物调查极地探测车(VIPER) 59 制定阶段非阿尔忒弥斯重大项目评估 61 蜻蜓计划 63 电动动力系统飞行演示(EPFD) 65 火星样品返回(MSR) 67 实施阶段非阿尔忒弥斯重大项目评估 69
简介:心脏病是显着影响受害者生活方式和生活的著名人类疾病。心律不齐(心律不齐)是反映个人心跳状态的关键心脏疾病之一。ECG(心电图)信号通常用于这种心脏疾病的诊断过程中。目标:在本手稿中,已经努力采用和检查新兴群智能(SI)技术的性能,以寻找用于心律不齐的最佳特征集。方法:已经考虑了279个属性和452个实例,标准基准UCI数据集集已被考虑。五种不同的基于SI的元元素技术。二进制灰狼优化器(BGWO),蚂蚁狮子优化(ALO),蝴蝶优化算法(BOA),蜻蜓算法(DA)和缎面鸟优化(SBO)也已被使用。此外,已经设计了五种新型SBO的混乱变体,以解决诊断心律不齐的特征选择问题。已经计算了不同的性能指标,例如精度,健身价值,最佳功能集和执行时间。结论:从实验中观察到,就心律不齐的准确性和适应性值而言,SBO的表现优于其他SI算法。bgwo,da,boa和alo。此外,当重点仅在尺寸上时,BOA和ALO似乎是最适合的。
简介。泰坦大气层与其表面之间的联系是独一无二的:它处于各种表面 - 大气过程的起源 - 液态甲烷流,波浪,降雨[1],沙丘运动,盐酸[2],尘埃[3]和雨暴风雨[4] - 在表面改变和大气动力学中都起着重要作用。有趣的是,泰坦的大气足以传播这些现象产生的声波。因此,可以通过记录其声学特征来定量和远程研究它们。的确,在板上毅力上具有超级骑士麦克风[5]的火星上已经证明了声学研究的巨大潜力[5],其中几个结果记录了近地面现象,例如湍流[6,7],风[8],尘埃[9]。但在泰坦上,由于声音传播条件的增强,这种潜力甚至更大:冷(〜90 K)和厚(〜1.5 bar)的表面大气(95%n 2,〜5%CH 4 [10])可以在长距离上维持声波,并吸收相对较低(见表。1)与火星或地球相比[11]。这种有利的环境激发了声学特性仪器赛车仪(API-V)在船上的船上载体下降模块,该模块成功地估计了下降期间和通过测量声速降落后的相对甲烷分数[12]。在2030年代中期,蜻蜓任务将探索赤道撞击火山口附近的泰坦,并带有可重新定位的旋翼飞机登陆器[13]。关键的地球物理和气象测量将由Dragmet套件(包括三个麦克风)组成的Dragmet Package提供[14]。为准备泰坦的声学探索,本研究旨在建模泰坦大气条件中的声音传播,以便能够估计水平
DraMS 蜻蜓质谱仪 DSL 深空物流 EAP 电动飞机推进系统 EGS 探索地面系统 EIS 木卫二成像系统 EMI 电磁干扰 EPFD 电动动力系统飞行演示 ESA 欧洲航天局 ESM 欧洲服务舱 ESPRIT-RM 欧洲加油、基础设施和电信系统 加油舱 EUS 探索上面级 EVA 舱外活动 GDC 地球空间动力学星座 GERS 网关外部机器人系统 HALO 居住和物流前哨 HLS 载人着陆系统 I-HAB 国际栖息地 ICPS 临时低温推进级 IMAP 星际测绘和加速探测器 ISRO 印度空间研究组织 ISS 国际空间站 IT 电离层-热层 JPL 喷气推进实验室 JWST 詹姆斯·韦伯太空望远镜 KDP 关键决策点 LBFD 低爆飞行演示器 LCRD 激光通信中继演示 MASPEX 行星探索质谱仪 MAV火星上升飞行器 MDR 任务定义审查 ML2 移动发射器 2 MSR 火星样本返回 NASA 美国国家航空航天局 NEO 近地天体 NEOCam NEO 相机 NISAR NASA ISRO – 合成孔径雷达 NPR NASA 程序要求 OCI 海洋颜色仪 OMB 管理和预算办公室 Orion Orion 多用途载人飞船 ORR 作战准备情况审查
背景 3 美国宇航局主要项目组合的成本和进度表现预计将恶化,月球计划面临挑战 10 美国宇航局在展示技术成熟度和设计稳定性方面总体上保持了项目组合的进展 20 美国宇航局正在采取行动,以识别和应对导致收购风险的挑战 27 项目评估 33 制定阶段项目的评估 36 蜻蜓 37 星际测绘和加速探测器 (IMAP) 39 动力和推进元件 (PPE) 41 Restore-L 43 宇宙历史、再电离时代和冰期探测器 (SPHEREx) 的光谱光度计 45 广角红外巡天望远镜 (WFIRST) 47 实施阶段项目的评估 49 商业载人航天计划 (CCP) 51 双小行星重定向测试 (DART) 53 木卫二快船 55 地面探测系统 (EGS) 57 詹姆斯·韦伯太空望远镜 (JWST) 59 Landsat 9 61 激光通信中继演示 (LCRD) 63 低空飞行演示器 (LBFD) 65 露西 67 火星 2020 69 美国国家航空航天局 (NASA) ISRO – 合成孔径雷达 (ISRO) 71 猎户座多用途载人飞船 (Orion) 73 浮游生物、气溶胶、云、海洋生态系统 (PACE) 75 灵神 77 太阳能电力推进 (SEP) 79 太空发射系统 (SLS) 81 太空网络地面段支持 (SGSS) 83 地表水和海洋地形 (SWOT) 85 机构评论 87
行星科学 3,120.4 3,200.0 3,383.2 3,265.8 3,246.1 3,350.8 3,389.7 行星科学研究 309.0 -- 307.4 333.3 352.0 360.2 386.4 行星科学研究与分析 221.3 -- 224.6 249.3 261.5 267.4 290.3 其他任务与数据分析 87.8 -- 82.8 84.0 90.5 92.8 96.2 行星防御 166.0 137.8 250.7 337.7 400.5 299.6 79.0 NEO 勘测者 110.0 90.0 209.7 296.7 358.5 257.6 39.0 其他任务和数据分析 56.0 -- 41.0 41.0 42.0 42.0 40.0 月球发现和探索 478.8 -- 458.5 459.0 460.5 472.0 483.3 VIPER 112.2 97.2 61.3 33.0 -- -- -- 其他任务和数据分析 366.5 -- 397.2 426.0 460.5 472.0 483.3 发现号 331.8 -- 247.5 386.4 426.0 579.2 625.9 灵神号 163.8 109.3 57.7 34.5 34.5 37.1 15.4 DAVINCI 12.4 -- 55.8 173.0 201.2 268.6 213.0 VERITAS 14.4 -- 1.5 1.5 1.5 1.5 1.5 其他任务和数据分析 141.1 -- 132.5 177.5 188.8 272.0 396.0 New Frontiers 283.7 -- 407.5 447.8 386.1 367.3 337.5 Dragonfly 219.1 400.1 327.7 355.5 274.8 207.7 24.8 其他任务和数据分析 64.6 -- 79.9 92.3 111.3 159.6 312.7 火星探索 265.0 -- 268.6 279.2 311.6 315.3 367.2 其他任务和数据分析 265.0 -- 268.6 279.2 311.6 315.3 367.2 火星样品返回 653.2 822.3 949.3 700.0 600.0 612.1 627.6 外行星和海洋世界 484.3 -- 318.4 121.3 134.8 178.3 321.9 木星 木卫二 472.1 345.0 303.3 100.8 80.6 77.7 84.0 其他任务和数据分析 12.2 -- 15.1 20.6 54.2 100.6 237.9 放射性同位素功率 148.6 -- 175.5 201.1 174.6 166.8 160.9
DrACO 复杂有机物采集钻探 DraMS 蜻蜓质谱仪 DSL 深空物流 EGS 探索地面系统 EIS 欧罗巴成像系统 EPFD 电动动力系统飞行演示 ESA 欧洲航天局 ESM 欧洲服务舱 ESPRIT-RM 欧洲加油、基础设施和电信系统 加油舱 EUS 探索上面级 GERS 网关外部机器人系统 GRNS 伽马射线和中子光谱仪 GSLV 地球同步卫星运载火箭 HALO 居住和物流前哨 HLS 载人着陆系统 i-Hab 国际栖息地 I&T 集成和测试 ICON 电离层连接探测器 ICPS 临时低温推进级 IMAP 星际测绘和加速探测器 IOC 初始运行能力 ISRO 印度空间研究组织 ISS 国际空间站 JAXA 日本宇宙航空研究开发机构 JCL 联合成本和进度置信水平 JWST 詹姆斯·韦伯太空望远镜 KaRIn Ka 波段雷达干涉仪KASI 韩国天文与空间科学研究所 KDP 关键决策点 L9 Landsat 9 LBFD 低空飞行演示器 LCRD 激光通信中继演示 LICIACube Light 意大利立方体卫星(用于小行星成像) LIDAR 光探测与测距 MASPEX 行星探测质谱仪 MDR 任务定义审查 MISE 测绘成像光谱仪(用于木卫二) ML2 移动发射器 2 MPM 多用途模块 NASA 美国国家航空航天局 NE
封闭1对2024财年预算水平低于2023财年的NASA预算水平的影响,NASA颁布了2024财年的2024财年预算等于22%,低于2023财年NASA颁布的25.4B $ 25.4B的预算将为$ 19.8B,或从FY 2023级别降低了5.6B美元。下面的信息概述了NASA Mission Direction,减少$ 5.6B将如何影响代理机构任务。NASA Science: Reduction of $1.7B from FY 2023 enacted level, for a FY 2024 level of $6.1B A reduction of this magnitude would threaten NASA's ability to continue making critical advancements in all Science disciplines, and threaten NASA's international leadership in areas of National priority: Planetary Science: Significant impacts to Planetary missions and research: o Delay or cancel the Mars Sample Return (MSR) mission,与欧洲航天局的合作伙伴关系,将火星材料的第一批样品带回地球进行详细研究,包括已经由火星毅力漫游者收集/缓存的样品。延迟/取消将威胁到美国对这一开创性任务的领导,破坏了美国与中国的竞争,并随着持久漫游者的进一步衰老而增加了任务风险。o延迟或取消Davinci,这是一项以空前的细节研究来源,进化和现在的金星状态的使命,从云层的顶部附近到地球的表面。o延迟或取消蜻蜓,这是向土星的月球泰坦运送旋翼的使命,以推动我们寻找生命的基础。地球科学:对地球科学任务,研究和技术的重大影响,包括地球系统天文台(ESO)。天体物理学:重大影响包括:o最多取消三个ESO任务,并将一个ESO任务推迟了1 - 2年。ESO将提供关键信息,以指导与气候变化,缓解自然危害,抗击森林大火和改善农业过程有关的工作。取消/延迟将威胁国际贡献,并延迟衰老调查推荐的科学的进步,这可能会使美国在气候研究中的领导能力。o大大延迟了Landsat的下一个任务,该任务为下一代Landsat用户提供了最长的地球地面空间记录和新功能的连续性。o在地球探险家/风险投资类计划中延迟了针对中小型工具/任务的新竞争机会,以解决关键的地球科学和应用需要o需要减少商业数据购买,技术和研究投资,并有可能取消先前授予的赠款。
背景:连续修改,次优的软件设计实践和严格的项目截止日期有助于代码气味的扩散。检测和重构这些代码气味对于维持复杂而必不可少的软件系统至关重要。忽略它们可能会导致未来的软件缺陷,使系统具有挑战性,并最终过时。监督的机器学习技术已成为无需专家知识或固定阈值值的代码气味分类的有价值的工具。可以通过有效的特征选择技术和优化超参数值来实现分类器性能的进一步增强。AIM:通过使用各种类型的元元素算法(包括群体智能,物理学,数学和基于生物的)等各种类型的元元素算法对多种机器学习分类器的性能度量进行改进。将其性能度量进行比较,以在代码气味检测的背景下找到最佳的元元素算法,并根据统计测试评估其影响。方法:本研究采用了十六种当代和鲁棒的元元素算法来优化两种机器学习算法的超参数:支持向量机(SVM)和k -near -tehermest邻居(K -NN)。无免费的午餐定理强调了一个应用程序中优化算法的成功可能不一定扩展到其他应用程序。因此,对这些算法进行了严格的比较分析,以确定最佳的代码气味检测解决方案。75%,100%和98。分别为57%。分别为57%。各种优化算法,包括算术,水母搜索,基于学生心理学,基于学生心理学,正弦余弦,Jaya,Jaya,crow Search,Dragon Fly Fly,Krill Herd,Multi-Forse,共生,花生,花授粉,基于学习的学习,基于学习,牵引力搜索,牵引力搜索和基于生物地理学的优化。结果:在优化的SVM的情况下,获得的最高准确性,AUC和F量值为98。非常明显的是,准确性和AUC的显着提高,达到32。22%和45。分别观察到11%。对于k -nn,最佳准确性,AUC和F量值的值在100%下都是完美的,准确性和ROC -AUC值值得注意的远足,相当于43。89%和40。 分别为83%。 结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。 统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。 优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。 这个创新89%和40。分别为83%。结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。这个创新
两名研究员/设施负责人职位空缺 美国卫生与公众服务部 (DHHS) 国立卫生研究院 (NIH) 国家药物滥用研究所 (NIDA) 正在招聘两名研究员/设施负责人,负责内部研究项目 (IRP)。选定的候选人将获得 NIDA IRP 提供的资源以开展持续的项目运营,并负责管理这些核心内的预算、人员、设备和空间。NIDA IRP 将提供足够的实验室和办公空间来推进核心的发展。这些设施支持 NIDA IRP 内的研究,NIDA IRP 位于马里兰州巴尔的摩市约翰霍普金斯湾景医疗中心园区内的生物医学研究中心内。更广泛的 NIH 园区和巴尔的摩的 NIDA IRP 提供了丰富且高度互动的转化神经科学环境。包括全额联邦福利。工资将与经验相称。被任命者可以是美国公民、常住外国人或持有或有资格获得有效工作许可签证的非常住外国人。申请人必须提交一份个人简历(包括参考书目)、一份两页(单倍行距)的研究兴趣摘要和三个科学参考资料的联系信息,以及一份公平、多样性和包容性声明(不超过 2 页,单倍行距),描述指导、教学或其他经验、成功和挑战,与不同群体的女性、种族/少数民族个人以及生物医学研究中代表性不足的其他群体合作。共聚焦和电子显微镜 (CEM) 核心的职员科学家/设施负责人设施负责人将直接管理 CEM,CEM 专注于药物成瘾的基本大脑机制,使用共聚焦和电子显微镜技术和其他新兴显微镜技术来表征细胞器、组织培养和脑组织的细胞和超微结构特性。成功的候选人必须致力于科学卓越和高度协作的研究。申请人必须拥有神经科学、分子生物学或相关领域的医学博士或哲学博士或同等学位。具体的选拔标准包括免疫透射显微镜方面的经验,包括使用脑组织和组织培养进行包埋前和包埋后免疫标记、通过免疫标记和负染色对分离的囊泡进行超微结构分析、使用脑组织进行神经元 3D 重建的连续块面扫描 EM、使用脑组织进行体积扫描 EM 和电子断层扫描、免疫荧光、共聚焦显微镜、使用脑组织和组织培养的超分辨率显微镜、相关光和 EM 神经元成像用于使用免疫标记对轴突末端进行 3D 重建,以及使用 Imaris、Amira 和 Dragonfly 软件进行图像数据分析以使用共聚焦和/或 EM 图像进行 3D 重建。具有统计学经验者优先,具有核心设施管理经验者优先。成功候选人将有望与 NIDA IRP 内的其他研究小组合作,并为旨在了解药物成瘾机制的研究提供最先进的显微镜支持。因此,具有建立和维持合作工作能力的证明是非常可取的。遗传工程和病毒载体核心 (GEVVC) 的科学家/设施负责人设施负责人将负责管理 GEVVC,该设施专注于开发能够调节和监测神经系统中的分子、细胞和电路的遗传工具,并为 NIDA IRP 提供一般分子生物学支持。成功候选人必须致力于科学卓越和高度协作的研究。申请人必须拥有医学博士或哲学博士或同等学位。选择标准包括以下一项或多项经验:CRISPR 基因编辑、RNA 沉默工具、光遗传学/化学遗传学/遗传编码生物传感器、转录组学和转基因动物生成。成功候选人将有望与 NIDA-IRP 内的其他研究小组合作,并提供最先进的遗传和分子生物学工具来支持旨在了解药物成瘾机制的研究。因此,建立和维持合作工作的能力是十分必要的。