摘要 我们开发了一种多光子成像方法,通过完整的角质层捕捉行为苍蝇的神经结构和活动。我们的测量结果表明,苍蝇头部角质层在波长 >900nm 时具有惊人的高透射率,而通过角质层成像的困难是由于头部角质层下方的气囊和/或脂肪组织。通过压缩或去除气囊,我们通过完整的角质层对苍蝇大脑进行了多光子成像。我们的解剖和功能成像结果表明,2 光子和 3 光子成像在蘑菇体等浅表区域相当,但 3 光子成像在中央复合体等较深的区域更胜一筹。我们进一步展示了 2 光子通过角质层功能成像,可以对行为苍蝇蘑菇体 γ 叶的气味诱发钙反应进行短期和长期成像。这里开发的通过角质层成像方法延长了苍蝇体内成像的时间限制,并开辟了捕捉苍蝇大脑神经结构和活动的新方法。
谷氨酸是一种主要的神经递质,被所有脊椎动物和无脊椎动物的神经系统广泛使用。它主要是一种兴奋性神经递质,与神经系统发育以及从神经元之间简单的信息传递到神经系统功能的更复杂方面(包括突触可塑性、学习和记忆)的无数大脑功能有关。因此,识别谷氨酸能神经元及其谷氨酸释放位点对于理解神经回路功能的机制以及信息如何处理以产生行为至关重要。在这里,我们描述和表征了 smFLAG-vGlut,这是果蝇模型系统的谷氨酸能突触囊泡的条件标记。smFLAG-vGlut 已通过谷氨酸能神经元和突触囊泡的功能性、条件表达和特异性验证。 smFLAG-vGlut 的实用性通过对 26 种不同的中枢复合神经元类型进行谷氨酸能神经递质表型分析得到证实,其中 9 种被确定为谷氨酸能神经元。这种对谷氨酸神经递质使用的阐释将增强中枢复合神经回路的建模,从而增强我们对果蝇大脑这一区域信息处理的理解。使用 smFLAG 进行谷氨酸能神经递质表型分析和谷氨酸释放位点识别可以扩展到由二进制转录系统驱动程序表示的任何果蝇神经元。
摘要 人类和其他生物体中的 p53 基因家族成员编码大量蛋白质亚型,其功能大部分尚不明确。以果蝇为模型,我们发现 p53B 亚型主要在生殖细胞中表达,并与 p53A 共定位到亚核体中。然而,只有 p53A 介导生殖细胞和胞体中对电离辐射的凋亡反应。相反,p53A 和 p53B 都是减数分裂 DNA 断裂正常修复所必需的,当减数分裂重组有缺陷时,这种活性更为重要。我们发现在具有持续性 DNA 断裂的卵母细胞中,p53A 也是激活减数分裂粗线期检查点所必需的。我们的研究结果表明,果蝇 p53 亚型具有 DNA 损伤和细胞类型特异性功能,与哺乳动物 p53 家族成员在基因毒性应激反应和卵母细胞质量控制中的作用相似。
摘要果蝇的血脑屏障(BBB)包含薄的上皮胶质神经胶质(SPG),该层通过形成富含钾的血膜的神经索,并通过形成富含钾的血膜将其隔离,并通过形成富含钾的血晶层隔离。以前,我们确定了一种新型的GI/GO蛋白偶联受体(GPCR),Moody是胚胎阶段BBB形成的关键因素。然而,在BBB形成和成熟中,情绪信号传导的分子和细胞机制尚不清楚。在这里,我们将依赖性的蛋白激酶A(PKA)鉴定为地层所需的至关重要的情绪低落效应子,以及在幼虫和成人阶段持续的SPG生长和BBB维护。我们表明,PKA在SPG细胞的基础侧富集,并且这种喜怒无常/PKA途径的极化活性可很好地调节巨大的细胞生长和BBB完整性。喜怒无常/PKA信号传导以高度协调的时空方式准确调节了肌动球蛋白的收缩性,囊泡贩运和适当的SJ组织。这些作用部分由PKA的分子靶标MLCK和RHO1介导。此外,SJ超微结构的3D重新冲突表明,单个SJ段而不是其总长度的连续性对于产生适当的细胞细胞密封至关重要。基于这些发现,我们建议在控制细胞生长和维持BBB的完整性过程中,在SPG次级上皮的连续形态发生过程中,两极分化的喜怒无常/PKA信号在控制细胞生长和维持BBB的完整性方面起着核心作用,这对于在器官发生过程中维持组织大小和脑稳态至关重要。
一百多年来,果蝇(Drosophila melanogaster)一直是生物和生物医学研究的有力模型生物,因为它与人类有许多遗传和生理相似之处,并且可以使用复杂的技术来操纵其基因组和基因。果蝇研究界迅速采用了 CRISPR 技术,自首次在果蝇中发表成簇的规律间隔短回文重复序列 (CRISPR) 以来的 8 年里,他们探索并创新了诱变、精确基因组工程等方法。此外,由于寿命短和遗传学的便利性,果蝇成为体内应用和改进快速发展的 CRISPR 相关 (CRISPR-Cas) 工具的理想试验场。在这里,我们回顾了 CRISPR 试剂输送方面的创新、切割和同源定向修复 (HDR) 效率的提高以及标准 Cas9 方法的替代方案。虽然重点主要放在体内系统上,但我们也描述了果蝇培养细胞的作用,它既是评估新 CRISPR 技术过程中不可或缺的第一步,也是全基因组 CRISPR 池筛选的平台。
尽管理论上阐明了牙粒卫星DNA重复的快速演变以促进混合不兼容(HI)(Yunis和Yasmineh 1971; Henikoff等; Henikoff等。2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan和Yamashita 2017),如何影响杂种细胞的发散重复量仍然很少了解。 最近,我们证明了从多个染色体到“染色体”的序列特异性DNA结合蛋白簇DNA,从而将染色体捆绑在单个核中(Jagannathan等人。 2018,2019)。 在这里,我们表明,果蝇杂交细胞中发散卫星DNA的无效聚类导致铬成分破坏,相关的微核形成和组织萎缩。 我们进一步证明,先前鉴定的HI因子触发了杂种中心的染色体破坏和微核,将其功能与保守的细胞过程联系起来。 一起,我们提出了一个统一的框架,该框架解释了密切相关的物种之间广泛观察到的卫星DNA差异如何引起生殖分离。2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan和Yamashita 2017),如何影响杂种细胞的发散重复量仍然很少了解。最近,我们证明了从多个染色体到“染色体”的序列特异性DNA结合蛋白簇DNA,从而将染色体捆绑在单个核中(Jagannathan等人。2018,2019)。在这里,我们表明,果蝇杂交细胞中发散卫星DNA的无效聚类导致铬成分破坏,相关的微核形成和组织萎缩。我们进一步证明,先前鉴定的HI因子触发了杂种中心的染色体破坏和微核,将其功能与保守的细胞过程联系起来。一起,我们提出了一个统一的框架,该框架解释了密切相关的物种之间广泛观察到的卫星DNA差异如何引起生殖分离。
Na 1 敏感性是 Na 1 激活的 K 1 (K Na ) 通道的独特特性,这使其天然适合对抗 Na 1 离子的突然流入。因此,长期以来人们一直认为 K Na 通道可能具有保护功能,防止与神经元损伤和疾病相关的过度兴奋。但这一假设基本上未经检验。在这里,我们检查了雄性和雌性果蝇 Slo2 ( dSlo2 ) 基因编码的 K Na 通道。我们表明,dSlo2/K Na 通道选择性地表达在成人大脑的胆碱能神经元以及谷氨酸能运动神经元中,在这些神经元中,抑制兴奋可能起到抑制整体多动和癫痫样行为的作用。事实上,我们表明,喂食果蝇胆碱能激动剂的效果会因 dSlo2/K Na 通道的丧失而加剧。与哺乳动物的 Slo2/K Na 通道类似,我们发现 dSlo2/K Na 通道编码 TTX 敏感的 K 1 电导,这表明 dSlo2/K Na 通道可以由电压依赖性 Na 1 通道携带的 Na 1 激活。然后,我们测试了 dSlo2/K Na 通道在已建立的遗传性癫痫模型中的作用,其中电压依赖性持续性 Na 1 电流 (I Nap ) 升高。我们发现 dSlo2/K Na 通道的缺失增加了对机械诱发的癫痫样行为的敏感性。在用 I Nap 增强剂藜芦定治疗的 WT 果蝇中也观察到了类似的结果。最后,我们表明,在遗传和药物引发的癫痫模型中,dSlo2/K Na 通道的缺失都会导致自发性癫痫的出现。总之,我们的研究结果支持这样一种模型,其中由神经元过度兴奋激活的 dSlo2/K Na 通道有助于形成保护性阈值以抑制癫痫样活动的诱导。
识别细胞起源并绘制神经元的树突状和轴突轴的绘制已经是世纪以来的历史,以了解这些脑细胞之间的异质性。当前基于脑弓的转基因动物将多光谱标记的优势与邻近的细胞或谱系区分开,但是,它们的应用受到颜色容量的限制。为了改善分析吞吐量,我们设计了Bitbow,这是Brainbow的数字格式,该格式将调色板呈指数扩展,以提供成千上万的频谱分辨出的独特标签。我们生成了转基因位果蝇线,已建立的统计工具以及简化的样品制备,图像处理和数据分析管道,以方便地绘制神经谱系,研究神经元形态并揭示了具有前所未有的速度,尺度,尺度和分辨率的神经网络模式。
动物神经系统在处理感觉输入方面非常有效。神经形态计算范式的目的是针对神经网络计算的硬件实施,以支持用于构建脑启发的计算系统的新颖解决方案。在这里,我们从果实幼虫的神经系统中的感觉处理中汲取灵感。具有<200个神经元和<1.000的强烈有限的计算资源,幼虫嗅觉途径采用基本计算来转变外围的广泛调节的益人的输入,成为中央大脑中良好的稀疏代码。我们展示了这种方法如何使我们能够在尖峰神经网络中实现刺激模式的稀疏编码和提高的可分离性,并在混合体信号实时神经形态硬件上通过软件仿真和硬件仿真验证。我们验证反馈抑制是在神经元种群中支持空间结构域稀疏性的主要基础,而尖峰频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的例外表明,在神经形态硬件上有效地实现了如此大小的生物学上现实的神经网络,可以实现并行处理并有效地编码在全时间分辨率下进行感官。
1欧洲果蝇种群基因组学财团(Droseu),2阿什沃思实验室,爱丁堡大学进化生物学研究所,夏洛特·奥尔巴赫路,爱丁堡·奥尔巴赫路,爱丁堡EH9,英国3fl,英国3Fl,3弗尼Ge´nomes,Comportement et e´cologie,91198 Gif-Sur-Yvette,法国,5个生物学系,乔治敦大学,华盛顿特区乔治敦大学,美国6号生物学系,隆德大学进化生态学部,So so。LVEGATAN37,SOULUND 223 62,SWEDEN,SWEDEN,SWEDEN,SWEDEN,SWEDEN,7级生物学。 Maximilians-Universita¨t Mu¨ nchen, Planegg, Germany, 8 Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy, 9 Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA, 10 Institute of Integrative Biology, University of Liverpool,利物浦L69 7ZB,英国,11 UMR CNRS 6553 Ecobio,Ecobio,Uniestite de Rennes1,法国雷恩斯,法国,12个生物学研究所“ Sinisa Stankovic”研究所,塞尔比亚国立国家研究所,贝尔格莱德大学,贝尔格莱德大学,Bulevar Despota Stefana 142,Belgrade,Belgrade,Belgrade,serbii forgrade forgrade forgrade塞尔维亚贝尔格莱德(Belgrade),芬兰Jyvaâskyla的生物与环境科学系14号,乌克兰国家南极科学中心15