保守转录因子的不同组合调节眼睛前体细胞的分裂,然后在果蝇(果蝇)幼虫前体组织中诱导感光细胞规范,称为眼盘。在第三龄幼虫寿命中,由凹入细胞层制成的形态发生沟(MF)起源于眼盘后缘,并朝着眼盘前侧传播。MF前面的细胞处于增殖阶段,其后部细胞开始分化为感光体。分化的视网膜细胞形成果蝇中化合物成年眼睛的单位。先前的研究表明,锌指转录因子(TSH)促进了MF前方的细胞分裂。C末端结合蛋白(CTBP)是一种保守的转录共抑制剂,可限制眼盘中的细胞分裂。有趣的是,我们的免疫沉淀分析表明,TSH和CTBP分子在眼盘中相互作用。因此,我们的研究目标是确定分子相互作用是否与果蝇中的眼睛发育途径相关。我们已经开发了蝇菌株,在MF前部的分裂细胞中TSH&CTBP过表达。结果,我们发现苍蝇中没有TSH过度表达的苍蝇中没有或微小的成年眼睛,并且在CTBP过表达的苍蝇中出现了微妙的较大的成年眼。接下来,我们计划通过过度表达TSH&CTBP来评估其相互作用对眼表型的影响来制作双突变体。结果将有助于确定由TSH和CTBP调节的眼睛发育过程。
免疫防御是一个复杂的特征,影响并受到许多其他宿主因素的影响,包括性别,交配和饮食环境。我们使用了与农业相关的真菌性emopophopana,Beauveria bassiana和模型托管有机体果蝇,以研究如何相互关联性,交配和饮食环境对免疫的影响。我们表明,免疫防御中的性二态性方向取决于交配状态和交配频率。我们还表明,免疫防御后的感染后二聚体会随着时间的流逝而变化,并受到感染前后饮食状况的影响。用富含蛋白质的酵母补充饮食可改善感染后的存活率,但在感染后而不是之前进行补充后,更多的是。免疫防御,性别,交配和饮食之间的多向影响显然很复杂,尽管我们的研究阐明了其中一些关系,但仍有必要进一步研究。此类研究在农业和医学中具有潜在的下游应用。
抽象动物可以连续学习不同的任务以适应不断变化的环境,因此具有有效应对任务间干扰的策略,包括主动干扰(Pro-I)和追溯干扰(Retro-I)。已知许多生物学机制有助于学习,记忆和忘记一项任务,但是,仅当学习顺序不同任务的理解相对较少时,才涉及的机制。在这里,我们在果蝇中两个连续的关联学习任务之间剖析了Pro-I和retro-I的分子机制。pro-i比retro-i对任务间隔(ITI)更敏感。它们在简短的ITI(<20分钟)中一起出现,而在ITI中只有Retro-I在20分钟以后保持显着。急性过表达的开瓶器(CSW),一种进化保守的蛋白酪氨酸磷酸酶SHP2,在蘑菇体(MB)神经元中降低了Pro-I,而CSW急性敲低CSW ADACERBATES PRO-I。进一步发现CSW的这种功能依赖于MB神经元的γ子集和下流RAF/MAPK途径。相比之下,操纵CSW不会影响复古I和单个学习任务。有趣的是,调节retro-i的分子对Rac1的操纵不会影响Pro-I。因此,我们的发现表明,学习不同的任务连续触发不同的分子机制来调节主动和追溯干扰。
寄生线虫感染的关键方面是线虫逃避和/或抑制宿主免疫的能力。这种免疫调节能力可能是由于感染过程中数百种排泄/分泌蛋白(ESP)的释放而驱动的。尽管已显示ESP对各种宿主表现出免疫抑制作用,但我们对释放和宿主免疫之间的分子相互作用的理解需要进一步研究。我们最近确定了从昆虫病原线虫(EPN)steinernema carpocapsae释放的分泌的磷脂酶A2(SPLA 2),我们命名为SC-SPLA 2。我们报告说,SC-SPLA 2增加了感染了肺炎链球菌并促进细菌生长增加的果蝇的死亡率。此外,我们的数据表明,SC-SPLA 2还能够下调TOLL和IMD途径相关的抗菌肽(AMP),包括果霉素和防御素,除了抑制了血液中的吞噬吞噬作用外。sc-Spla 2对D. melanogaster有毒,严重程度均与剂量和时间有关。总体而言,我们的数据强调了SC-SPLA 2具有有毒和免疫抑制能力。
成年果蝇的抽象蘑菇体(MB)具有成千上万个肯尼因神经元的核心;早期出生的G类的轴突形成一个内侧叶,而后来出生的α'β”和αβ类形成内侧和垂直叶。幼虫仅用γ神经元孵化,并使用其γ神经元的幼虫特异性轴突分支形成垂直叶“ facsimile”。MB输入(MBIN)和输出(MBON)神经元将Kenyon神经元裂片分为离散的计算室。幼虫有10个这样的隔室,而成年人有16个。我们确定了定义10个幼虫室的32个Mbons和Mbins中的28个命运。随后将七个箱子纳入成人MB;他们的四个Mbins死亡,而12个Mbins/ Mbons重塑以在成人隔室中起作用。其余三个隔间是特定于幼虫的。在变形时,它们的MBIN/MBONS跨不同分化,将MB留给其他成人脑电路。成人垂直裂片是使用从成人特异性神经元池招募的Mbons/Mbins制成的。细胞死亡,隔室转移,跨差异和募集新神经元的结合导致没有通过变质维持幼虫mbin-mbon连接。在这个简单的层面上,我们没有发现从幼虫到成人的记忆痕迹的解剖基板。反差异神经元的成年表型代表其进化的祖先表型,而其幼虫表型是幼虫阶段的衍生象征。这些细胞主要出现在也产生永久MBIN和MBON的谱系中,这表明幼虫指定因子可以允许与出生或同胞身份相关的信息以幼虫的修改方式解释,以使这些神经元获得幼虫表型修饰。变形时这种因素的丧失允许这些神经元恢复其在成年人中的祖先功能。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年2月12日发布。 https://doi.org/10.1101/2023.02.10.528086 doi:Biorxiv Preprint
作为一种模型生物,果蝇在帮助我们理解大脑如何控制复杂行为方面具有独特的贡献。它不仅具有复杂的适应性行为,而且还具有独特强大的遗传工具包、日益完整的中枢神经系统密集连接组图谱和快速增长的细胞类型转录组谱。但这也带来了一个挑战:鉴于可用数据量巨大,研究人员如何查找、访问、整合和再利用 (FAIR) 相关数据,以便开发电路的综合解剖和分子图像、为假设生成提供信息并找到用于测试这些假设的实验试剂?虚拟蝇脑 (virtual fly brain.org) 网络应用程序和 API 为这个问题提供了解决方案,它使用 FAIR 原理整合神经元和大脑区域的 3D 图像、连接组学、转录组学和试剂表达数据,涵盖幼虫和成虫的整个中枢神经系统。用户可以通过文本搜索、单击 3D 图像、按图像搜索和按类型(例如多巴胺能神经元)或属性(例如触角叶中的突触输入)查询,按名称、位置或连接性搜索神经元、神经解剖学和试剂。返回的结果包括可在链接的 2D 和 3D 浏览器中浏览或根据开放许可下载的交叉注册 3D 图像,以及从文献中整理的细胞类型和区域的详细描述。这些解决方案具有可扩展性,可以涵盖脊椎动物中类似的图谱和数据集成挑战。
塑料污染是一个不断增长的问题,可能威胁野生动植物和人类。环境质量废物被降解为称为微塑料(MNPLS)的小颗粒,由于它们的尺寸很小,可以将其内部内部化为裸露的生物体,从而增加与暴露相关的风险。要适当确定相关的健康风险,必须获得/测试代表性MNPLS的环境样本。到了这一目标,我们获得了通过打磨商用水聚对苯二甲酸酯(PET)瓶子而获得的NPL。这些真实的PETNPL被广泛表征,并使用果蝇Melanogaster探索了它们的潜在危险影响。为通过消化道和整个身体突出内部化,使用了透射电子显微镜(TEM)和共聚焦显微镜。尽管观察到的Petnpl有效摄取到共生细菌,肠细胞和血细胞中,但暴露未能降低植物的存活率。然而,Petnpls暴露扰乱了应力,抗氧化剂和DNA修复基因的表达,以及在对物理肠道损伤反应的基因中。重要的是,由于暴露于PETNPLS,氧化应激和DNA损伤诱导均显着增加。
一个广泛使用的具有较长非倒置片段的平衡子的重要例子是 X 染色体平衡子 First Multiple 7 (FM7, Merriam 1968),其中在 FM7c 染色体上发现的雌性不育突变 singed, sn X2 因 4E1-11F2 倒位内的双交叉事件而多次丢失 (Miller et al. 2016a)。我们研究了该区域中的几个雌性不育基因和雌性致死基因(例如 ovo 、 snf 、 Sxl 、 otu ; Grammates et al. 2022),并希望实现更好的平衡。由于我们使用的这些基因的等位基因在雄性中可存活且可育,因此我们希望平衡子具有半合子和纯合致死性。为了构建更好的平衡子,我们利用了 CRISPR/Cas9 基因组编辑系统 (Ren 等人 2013;Port 和 Bullock 2016;Benner 和 Oliver 2018),针对 FM7c 的这个大型有问题的倒位 (4E1-11F2,图 1B)。这个片段中的新倒位将更好地抑制此区域内的双交叉事件。为了有目的地设计一个新的倒位,我们想要在 4E1-11F2 片段内创建一个断点,并在 FM7c 上此片段外的另一个区域创建一个断点。我们决定在 FM7c 平衡子染色体中的 cut (ct,在 4E1-11F2 内,图 1B) 处进行倒位,这是一个必需基因,但具有可行的等位基因,以及 white a (wa,在 4D7-1B3 内,图 1B)。为了实现这一目标,我们创建了一个多顺反子 CRISPR gRNA 构建体(Port 和 Bullock 2016;Benner 和 Oliver 2018),其中包含两个针对 wa 第一个内含子的 gRNA(Grammates 等人 2022)和两个针对 ct 和 ct 6 之间区域的 gRNA
摘要 成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 是一种高效灵活的基因组编辑技术,具有从基因治疗到种群控制等众多潜在应用。一些拟议的应用涉及将 CRISPR/Cas9 内切酶整合到生物体的基因组中,这引发了对转基因个体可能有害影响的疑问。一个特别相关的例子是基于 CRISPR 的基因驱动,旨在改变整个种群的基因。此类驱动的性能在很大程度上取决于驱动携带者所经历的适应性成本,但人们对这些成本的大小和原因知之甚少。在这里,我们通过跟踪四种不同转基因构建体的等位基因频率来评估果蝇笼养种群中基因组 CRISPR/Cas9 表达的适应性效应,这使我们能够将 Cas9 的整合、表达和靶位活动造成的“直接”适应性成本与潜在的脱靶切割造成的适应性成本区分开来。使用最大似然框架,我们发现没有直接适应度成本但因脱靶效应而产生中等成本的模型最适合我们的笼状数据。与此一致,我们没有观察到具有 Cas9HF1(Cas9 的高保真版本)的构建体的适应度成本。我们进一步证明,在归巢驱动器中使用 Cas9HF1 代替标准 Cas9 可实现类似的驱动器转换效率。这些结果表明,基因驱动应使用高保真内切酶进行设计,并且可能对涉及 CRISPR 内切酶基因组整合的其他应用产生影响。