睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。
扩展果蝇工具包,以双重控制基因表达的乔纳森·齐林1,*,芭芭拉·朱西亚克2,†,拉斐尔·洛佩斯1,†,本·埃文(Ben Ewen)校园1,贾斯汀·A·博斯奇1,贾斯汀·A·博世(Justin A.马萨诸塞州波士顿,哈佛医学院,哈佛医学院2)生理学与生物物理学系,加利福尼亚大学,欧文,加利福尼亚州3)霍华德·休斯医学院,马萨诸塞州波士顿 *相应的作者†这些作者对这项工作的摘要同样贡献了在两种不同的组织中,在同一动物中进行了两种不同的组织,尤其是在同一动物中,尤其是一项阶级。通过结合GAL4/UAS和第二个二元表达系统(例如Lexa-System或QF系统)的技术使这种研究成为可能。在这里,我们描述了一种试剂资源,该试剂促进了在各种果蝇组织中综合使用GAL4/UAS和第二个二元系统。专注于具有良好特征的GAL4表达模式的基因,我们通过CRISPR敲击产生了一组40多个Lexa-Gad和QF2插入,并验证了它们在幼虫中的组织特异性。我们还构建了单个向量中编码QF2和Lexa-GAD转录因子的构造。成功地集成了该构建体中的蝇基因组后,使用FLP/FRT重组来隔离仅表达QF2或Lexa-GAD的飞行线。最后,使用新的兼容shRNA矢量,我们评估了Lexa和QF系统用于体内基因敲低,并正在生成此类RNAi飞行线的库作为社区资源。2007;珀金斯等。 2015)。2007;珀金斯等。2015)。一起,这些Lexa和QF系统向量和飞行线将为需要以同一动物以正交方式激活或抑制两个不同基因的研究人员提供一组新的工具。简介组合二进制系统使用RNAi或CRISPR的功能丧失(LOF)和功能增长(GOF)研究的大多数试剂依赖于GAL4/UAS介导的表达(Brand and Perrimon 1993; Dietzl等人。2015; Zirin等。2020;港口和布特罗斯2022)。但是,一些研究,例如对细胞间或器官间通信的研究,需要同时使用两个独立的二元转录系统。例如,双重表达系统已被用来研究果蝇胰岛素样肽如何与大脑释放以控制器官生长(Colombani等人。2015),分析从嗅觉神经元到血细胞的信号传导(Shim等人2013),独立操纵配体产生和配体接收细胞(Yagi等2010),并可视化组织中克隆细胞种群之间的相互作用(Bosch等人基于需要同时操纵给定组织中不同细胞的集合,Lexa/Lexaop系统(Lai and Lee 2006)和QF/Quas System(Potter等人2010; Potter and Luo 2011)已开发。没有系统的研究比较这两个系统,只有轶事证据支持一个系统。
然而,关于新结构演变的遗传基础和其多样化的机制的遗传基础知之甚少。雄性生殖器的膀胱后叶是特定果蝇物种的新颖性。10–13裂片抓住雌性的产卵剂,并在腹部ter骨之间插入,因此对于交配和物种识别很重要。10–12,14–17后叶可能是从后螺旋中心10的同事演变而来的,此后在D. Simulans crade中的形态学上已经分散,尤其是在过去的240,000年中,在过去的240,000年中,由性选择驱动。18–21这种多样化的遗传基础是多基因的,但据我们所知,尚未鉴定出一个病因基因。22–30确定这些次要性结构多样化的基因对于理解对交配和物种识别的进化影响至关重要。在这里,我们表明SOX21B负调节后叶大小。这与D. Mauritiana中的Sox21b表达扩展是一致的,D. Mauritiana的后叶比D. simulans更小。我们通过产生相互的半合子来测试这一点,并确认了Sox21b的变化后叶下叶的后叶的演化。更重要的是,我们发现后叶大小差异是由Sox21b的特异性等位基因引起的,显着影响交配持续时间。综上所述,我们的研究揭示了新型形态结构及其对共管行为的功能影响的性别驱动驱动的多样化的遗传基础。
Presenilin(PSEN)基因中的突变是早期发作家族性阿尔茨海默氏病(FAD)的最常见原因。在细胞培养,体外生化系统和敲除小鼠中的研究表明,PSEN突变是功能丧失突变,损害了γ-泌尿酶活性。小鼠遗传分析强调了presenilin(PS)在学习和记忆,突触可塑性和神经递质释放以及神经元存活中的重要性,而果蝇研究进一步证明了PS在老化过程中PS在神经元存活中的进化作用。然而,在神经元存活中与PS相互作用的分子途径尚不清楚。为了调节PS依赖性神经元存活的遗传修饰符,我们开发了一种新的果蝇PSN模型,该模型表现出年龄依赖性神经变性和凋亡的增加。经过生物信息学分析,我们使用PSN KD模型中的两个独立的RNAi系在神经元中的每个基因的选择性敲低(KD)测试了排名最高的候选基因。有趣的是,在脂质转运和代谢中,增强PSN KD蝇中神经退行性的9个基因中有4个。具体而言,LPR1和LPR2的神经元特异性KD急剧恶化了PSN KD蝇中的神经退行性,LPR1或LPR2的过表达不会减轻PSN KD KD诱导的神经变性。此外,仅LPR1或LPR2 KD也会导致神经退行性,凋亡增加,攀爬缺陷和寿命缩短。这些发现表明,LPRS调节了依赖PSN的神经元存活,对于衰老大脑的神经元完整性至关重要。最后,LPR1和LPR2的杂合缺失或LPR1或LPR2的纯合缺失类似导致PSN KD Flies中的年龄依赖性神经变性,并进一步加剧神经变性。
非纤维甜味剂(NNS),非热甜味设备,已被广泛商业化以减少糖消耗。这种意图与健康益处相关联,尽管报告与这些替代品与非传染性疾病的消费相关。缺乏对这些相互作用的更广泛含义(例如对寿命)的更广泛含义的研究,例如缺乏研究。这项研究的目的是比较三个最近经FDA批准的NNS-Acesulfame-Potassium(ACE-K),Stevia和Monk Fruit的影响,对Drosophila Melanogaster的生存,这是一种寿命研究的模型,用于寿命研究,以发现对人类寿命的可能影响,并进一步影响了人类的使用,并具有对他们的使用,以及他们的用途。可以假设,如果将D. melanogaster喂食这三个NN,则用ACE-K喂养的人将具有最低的生存率,因为ACE-K与微生物失调有关,这与寿命降低有关。将15个男性和女性同步蝇分配给含有甜味剂的小瓶中,并以蔗糖作为对照为基础饮食。幸存者每三到四天记录32天。每种饮食的存活率显着低于对照,并且使用ACE-K,χ2(9,n = 240)= 244.2,p ﹤.00001最明显。试验期一半(第15天)之间的饮食之间的生存也有显着差异,χ2(3,n = 240)= 78.3,p ﹤.00001。11葡萄糖控制,胰岛素反应和具有长期健康影响的代谢受到饮食选择的严重影响。ace-k对D. melanogaster的寿命产生了不利影响,这表明这种甜味剂在人类中的潜在并行作用。引言不健康的饮食是美国发病率的主要危险因素,在2017年,国际上有1100万人死亡是营养因素不良的结果,例如食用热浓密的食物。12,例如,糖消耗的流行率与代谢综合征的发展,包括2型糖尿病,肥胖,高血压和心血管疾病有关。19糖的摄入还可能通过产生炎症性细胞因子而导致慢性炎症,这可以进一步增加对非传染性疾病的敏感性。3在2017 - 2018年,美国人平均每天消耗17茶匙糖,超过了世界卫生组织提供的最大摄入量建议。19
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
动物的消化道形成了一种选择性屏障,可以吸收营养素,离子和水,但限制了与潜在破坏性剂(例如毒素和病原体)接触。它还拥有一个复杂的菌群,该菌群通过营养和维生素的供应而有助于宿主健身(Thursby and Juge,2017年)。通过专门的物理屏障和复杂的粘膜免疫系统实现了消化道对病原体的有效免疫反应的能力(Sansonetti,2004年)。在哺乳动物中,众多先天和适应性免疫机制以沿消化道的区域化方式作用,以确保这种选择性。这些机制的效率得到了肠道上皮更新本身的强大能力的支持。上皮更新,因此保留了肠道完整性(Allaire等,2018; van der Flier and Cleer and Clevers,2009)。在消化道中免疫和耐受机制的复杂平衡中破裂,使宿主处于感染,炎症性疾病或肠道泄漏的风险(Allaire等,2018; Buchon等,2013a; Sansonetti,2004)。确保菌群维持同时预防致病感染的分子机制在很大程度上仍然未知,并且在有机体水平上仍然难以应对。由于其与哺乳动物肠道的解剖学和生理相似性,果蝇肠道是研究肠道病理生理学的首选模型(Lemaitre和Miguel-Aliaga,2013年)。果蝇的研究已经提供了有关粘膜先天免疫,肠道性认同,上皮更新,宿主 - 跨性别相互作用的见解,以及全球范围内有关肠道如何在有机体中整合的全球(Colombani和Andersen,2020)。
转座元素(TES)是寄生虫DNA序列,能够沿所有基因组的染色体移动和繁殖。可以通过靶向沉默表观遗传标记来控制它们,这可能会影响包括基因在内的相邻序列的Chro Matin结构。在这项研究中,我们使用了来自几个果蝇Melanogaster的卵巢样品和果蝇Simulans野生型菌株产生的转录组和表观基因组高吞吐量数据,以精细量化Te插入对基因RNA水平和组蛋白标记的影响(H3K9ME3和H3K9ME3和H3K4ME3)。我们的结果揭示了与梅拉·诺加斯特(D. Mela Nogaster)相比,TES对D. simulans中直源基因的表观遗传作用更强。同时,我们发现了D. mel Anogaster基因组中TE对基因H3K9me3的差异的较大贡献,这证明了Te数字周围的Te数与D. melanogaster中这种染色质标记的水平的更强相关性。总体而言,这项工作有助于理解TE在基因组中的物种特异性影响。它为TE提供的可观自然变异性提供了新的启示,这可能与适应性和进化潜力的对比有关。
图 2. 网络扰动的影响。A. 半脑中的每个突触都有一个置信度分数,表明自动识别它们的机器学习算法的置信度。我们通过排除置信度分数低于某个阈值的突触来扰动网络。扰动网络中每条边的权重都是其原始权重的一小部分;这里显示的是这些权重比的分布。这种扰动导致整体边缘变弱,更高的阈值也会切断更多边缘(在 0.0 的箱中计数)。B. 扰动网络中发现的社区数量与原始网络中的数量相比。灰线表示相等。在更高的分辨率尺度下,随着扰动图变得弱连接,相对于原始网络发现了更多的簇。
摘要 果蝇多聚腺苷酸 RNA 结合蛋白 Nab2 与一种因遗传性智力障碍而丢失的人类蛋白质同源,它通过一组基本上未定义的靶 RNA 控制成年运动、轴突投射、树突树枝化和记忆。在本文中,我们展示了 Nab2 在调节头部转录组中约 150 个外显子/内含子的剪接方面的特殊作用,并重点研究了在雌性神经元中富集的性别决定因子 Sex-lethal ( Sxl ) 中雄性特异性外显子的保留。先前的研究表明,这种剪接事件在雌性中受 Mettl3 复合物对 N6-甲基腺苷 (m 6 A) 的修饰调控。在分子水平上,Nab2 与神经元中的 Sxl 前 mRNA 结合并限制特定位点的 Sxl m 6 A 甲基化。同时,降低 Mettl3、Mettl3 复合物成分或 m 6 A 读取器 Ythdc1 的表达可挽救 Nab2 果蝇的突变表型。总体而言,这些数据表明 Nab2 是 m 6 A 甲基化的抑制剂,并意味着神经组织中 Nab2 和 Mettl3 调节的 RNA 之间存在显著重叠。