• 长时 PHES 提供可调度且灵活的发电,以更深的备用容量满足峰值需求,在太阳能高峰时段储存多余的发电,并承担长期风能或太阳能干旱的尾部风险。 • PHES 还产生同步发电,类似于现有的热能发电技术,并与现有能源系统的配置保持一致。这使得 PHES 能够在系统强度、电压控制、惯性、黑启动和频率控制方面提供许多好处,尤其是与短时 BESS 相比。 • PHES 的资产寿命约为 50 至 100 年或更长。这比相对较新且未经证实的 BESS 技术的资产寿命长得多,后者估计约为 15 - 20 年。 • 与 BESS 技术相比,PHES 能够在持续维护的情况下在更大程度上保持其原始存储容量和放电能力,而 BESS 技术通常会在资产的整个生命周期内经历存储和放电能力的重大退化。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
• 长时 PHES 提供可调度且灵活的发电,以更深的储备容量满足峰值需求,在太阳能高峰时段储存过剩发电,并覆盖长期风能或太阳能干旱的尾部风险。• PHES 还产生同步发电,类似于现有的热发电技术,并与现有能源系统的配置保持一致。这使得 PHES 能够在系统强度、电压控制、惯性、黑启动和频率控制方面提供众多优势,尤其是与短时 BESS 相比。• PHES 具有 50 至 100 年或更长的已证实资产寿命。这比相对较新且未经证实的 BESS 技术的资产寿命长得多,后者估计约为 15 – 20 年。• 与 BESS 技术相比,PHES 能够在更大程度上维持其原有的存储容量和放电能力,并进行持续维护,而 BESS 技术通常会在资产的整个生命周期内经历存储和放电能力的重大退化。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
尽管纳米流体为科学界提供了一些令人鼓舞的结果,但在其在工业中广泛采用之前仍存在一些挑战。一个重大的挑战是纳米流体的稳定性,这可能导致纳米颗粒聚集并影响粘度。超声处理是一种用于将纳米颗粒分散在碱流体中的常见方法。因此,这项工作的主要目的是研究超声处理持续时间和温度对MXENES稳定性和粘度的影响(Ti 3 C 2 T X)/水纳米流体。通过采用三种不同的超声处理持续时间,即60、90和120分钟,配制了含有0.05 wt%mxenes(Ti 3 c 2 t x)/水的纳米流体。Zeta电位值用作其稳定性的指标。与视觉检查结合使用,在纳米流体的配方后的第1、7和30天检查了样品的稳定性。在第1天,在纳米流体中观察到最佳稳定性在各个温度下超声固定90分钟,中等ZETA电位值超过-30 mV。但是,在所有情况下,稳定性随时间的降低。将超声处理持续时间延长至120分钟,导致纳米流体的粘度更高。在某些情况下,从20到60°C的温度变化并未显示出稳定性的相似趋势,这可能表明随温度变化而变化。因此,建议进行更多的研究以获取更多有关纳米流体的信息,例如使用显微镜的表征技术。关键字:mxene nanofluids;超声处理持续时间; Zeta电位也可以通过其他方法(例如整合表面活性剂,变化的pH水平和纳米颗粒浓度)以及修饰纳米颗粒表面和基础流体来提高稳定性。
摘要:基于材料的H 2存储在促进H 2作为低碳能量载体方面起着至关重要的作用,但是对特定应用所需的技术性能的指导仍然有限。金属 - 有机框架(MOF)吸附剂在电源应用中显示出潜力,但需要证明对现有压缩h 2存储的经济承诺。在此,我们评估了材料特性,电荷/放电模式的潜在影响,并提出了MOFS在长期储能应用中部署的目标,包括备份,负载优化和混合功率。我们发现,最新的MOF可以胜过低温存储,在需要≤8个周期的应用中,350 bar压缩存储,但需要增加≥5g/l的吸收,以使每年需要≥30个周期的应用具有成本竞争力。现有的挑战包括规模制造和量化低压存储的经济价值。最后,确定了未来的研究需求,包括整合热力学效应和降解机制。h
摘要 长期太空任务会产生大量废物,因此很难通过回收、废弃或再利用来管理废物。载人火星之旅以及地月自由点任务都曾研究过通过气闸舱将固体废物简单地送入太空的想法。人类旨在在火星上建立一个繁荣而持久的殖民地,需要解决的主要障碍包括为定居者提供稳定而有益的食物、燃料、药物和 3D 打印原料。尽管有很多关于在火星上生产必需品的建议,但使用微生物作为主要生产单位正越来越受欢迎。鉴于长期太空任务,本综述研究着眼于可持续性、卫生和回收等关键领域。为了使太空探索项目保持可行性并保证宇航员的安全,必须解决这些问题。我们研究的技术包括闭环系统、复杂的生命支持技术、资源效率和有效的回收利用。已经确定,长期规划、全球合作和行为改变对于太空探索实现其可持续性目标是必要的。太空组织可以通过结合这些技术来创建能够支持更长时间任务的自给自足的栖息地和航天器,同时减少对环境的影响。关键词:废物模型、水废物管理、太空回收
向低碳经济的过渡需要对我们的电力系统进行重大变革。迄今为止,政府已制定了激励可再生能源发电发展的目标和举措。政府还计划关闭现有的老化化石燃料火力发电。为了促进这一目标并确保电力系统能够保持安全,爱尔兰必须开发灵活的发电设施,以补充连接到我们电力系统的可再生能源发电设施(图 1)。灵活容量有多种类型,但一种关键形式是需要长时储能 (LDES),我们将其定义为持续时间至少为四小时的储能设施。LDES 具有独特的优势,它可以为电网提供一系列不同的服务,例如频率支持、电压支持、弹性、供电安全以及拥塞和约束管理服务。
建议在tick季(春季秋季)中将旅行者到流行国家 /地区,他们将参加森林地区的户外活动,例如步行,徒步旅行,狩猎,露营,骑自行车,钓鱼,进行现场工作等:那些计划长期居住在特有的地区。那些计划在地方性地区工作的人,从而增加了暴露于壁虱的风险(例如农业,军事,林业工作)