摘要 当前的量子软件开发策略仍然在量子力学本身错综复杂的特性之上表现出复杂性。量子编程语言要么局限于附加到经典对象以生成电路的低级、基于门的操作,要么需要通过代数表示对希尔伯特空间中的量子态变换进行建模。本文介绍了 Quuff 语言,它是一种高级、动态类型的量子经典编程语言。Quuff 编译器和运行时系统通过跨量子经典范式抽象的高级表达来促进量子软件开发。Quuff 构建在 Truffle 框架之上,该框架有助于堆栈的实现和效率,同时重用 JVM 基础架构。所呈现的比较表明,Quuff 本身是一种有效、易于使用的解决方案,可用于开发具有自动电路生成和高效计算功能的可执行量子程序。
量子自旋液体和曾经是凝结物理学主体的量子自旋液体,现在在各种Qubits中实现,提供了前所未有的机会,以研究多体量子渗透状态的典型物理学。量子不可避免地会暴露于环境的效果,例如熔融和耗散,据信这会导致多体纠缠。在这里,我们认为,与常见的信念折叠和耗散不同,可以引起量子自旋液体中新型的拓扑作用。我们通过Lindblad主方程方法研究Kitaev旋转液体和感谢您的曲折代码的开放量子系统。通过使用精确的溶液和数值方法,我们显示了通过反应和耗散的Anyon缩合的动态发生,从而导致从初始状态旋转液体到稳态旋转液体的拓扑转换。阐明了lindblad动力学的Anyon冷凝转换的机制。,我们还提供了对Anyon凝结图中Kitaev旋转液体与曲折代码之间的关系。我们的工作建议开放的量子系统是量子旋转液体和任何人的拓扑现象的新场地。
摘要:我们提供了多中心研究Palermo-Milan的结果,该研究旨在评估Neuroptimal®的有效性,Neuroptimal®是一种对患有耳鸣的患者有用的新治疗工具。我们假设使用Neuroptimal®可以改善对与之相关的耳鸣和心理物理症状的看法。neuroptimal®是一种训练形式,可以使大脑通过优化其活性自我调节。为了评估其有效性,我们正在对诊断为耳鸣的自愿患者进行一系列非线性神经Timtimal®神经反馈会话,从听力测量和自我评估问卷中收集数据,这些数据是涉及tinnitus和pationnitus and Partionolatigon Caresolovic Cresicaly Caresolovic Cresitic,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑和应力的数据。我们说明的结果,尽管需要在更大的样本上进行验证,但却是有希望的,似乎证实了这种独特技术的特征,该技术基于大脑活动,自我调节,神经塑性和学习的基本原理。
摘要:背景:帕金森病进展标志物计划发布了广泛的纵向解剖数据集,推动了旨在预测疾病发生和进展的机器学习研究的激增。然而,这些模型中使用的特征数量过多,往往掩盖了它们与帕金森病症状的关系。目标:本研究的目的有两个:(i)根据基线获得的大脑特征预测未来四年内的运动和认知障碍;(ii)从神经学角度解释负责不同症状的关键大脑区域的作用。方法:我们测试了几种深度学习神经网络配置,并报告了使用自动编码器深度学习模型在 5 倍交叉验证集上运行的最佳结果。与现有方法的比较:我们的方法改进了标准回归和其他方法的结果。它还包括神经影像生物标志物作为特征。结果:关键脑区对每种损伤的相对贡献随时间而变化,表明随着疾病的进展,罪魁祸首会动态地重新排序。具体来说,壳核最初是决定整体认知状态的最关键区域,直到后来才被黑质超越。苍白球是第一个影响运动得分的区域,其次是海马旁回和周围回,以及眶前回。结论:虽然区域性脑萎缩与帕金森症状之间的因果关系尚不清楚,但我们的方法表明,关键区域对认知和运动损伤的贡献比一般认为的更具动态性。
▶无需采用弦理论/滚动假设:我们研究一般领域理论并获得与模型无关的约束;然后,我们评估这种约束意味着弦乐压实▶我们寻找原理证明(半)永恒的宇宙加速度在弦线中可能是可能的。我们不会试图与观察接触
摘要:设计金属有机材料中的构建块是调整其动力学性质的有效策略,并且可以影响其对外部客体分子的响应。定制分子在这些结构中的相互作用和扩散非常重要,特别是对于与气体分离相关的应用。在此,我们报告了一种钒基混合超微孔材料 VOFFIVE-1-Ni,它具有依赖于温度的动力学性质和强大的亲和力,可以有效捕获和分离二氧化碳 (CO 2 ) 和甲烷 (CH 4 )。VOFFIVE-1-Ni 的 CO 2 吸收率为 12.08 wt % (2.75 mmol g − 1 ),在 293 K (0.5 bar) 下 CH 4 吸收量可忽略不计,CO 2 与 CH 4 的吸收比极好,为 2280,远远超过同类材料。该材料还表现出低于 −50 kJ mol −1 的良好 CO2 吸附焓,以及快速的 CO2 吸附速率(20 秒内达到 90% 的吸收率),这使水解稳定的 VOFFIVE-1-Ni 成为沼气升级等应用的有前途的吸附剂。关键词:混合超微孔材料、金属-有机骨架、碳捕获、吸附、分离
摘要 - 本文提出了开发非线性模型预测控制(NMPC)策略的端到端学习,该策略不需要明确的第一原理模型,并假定系统动力学是未知或部分已知的。本文提出了使用可用的测量结果来识别标称复发性神经网络(RNN)模型来捕获非线性动态,其中包括对状态变量和输入的约束。要解决仅将模型拟合到数据而产生的次优控制策略的问题,本文使用加固学习(RL)来调整NMPC方案并为真实系统生成最佳策略。该方法的新颖性在于使用RL来克服名义RNN模型的局限性并产生更准确的控制策略。本文讨论了RNN模型的初始状态估计的实施方面以及MPC中神经模型的整合。在经典的基准控制问题上证明了所提出的方法:级联的两个坦克系统(CTS)。索引术语 - 强化学习,非线性模型预测控制,复发性神经网络
摘要。DNA或脱氧核糖核酸都在每个单元中都发现,并且是细胞的主要信息存储介质。DNA存储了所有生物体的遗传信息,包括其生长,分裂和生活所需的指示。DNA由称为核苷酸碱基的四个不同的构件组成:腺嘌呤(A),胸腺胺(T),胞嘧啶(C)和鸟嘌呤(G)。基因组在体外进行了测序,利用编码策略(例如将一个键对对为0标记为0,而将数字信息存储为1)。在这项研究中,考虑了Atangana的合格分数衍生物,研究了双链DNA动力学系统的分数差分顺序。 将符合的子方程方法应用于系统。 分析导致了该模型的一些有趣的新精确解决方案。 一溶解溶液,多氧化解决方案和周期性波解决方案是可用于描述结果的三个广泛类别。 为了更好地了解发现的解决方案,我们在视觉上研究了其中一些。 可以看到DNA链的孤立和反态波,证明了系统的非线性动力学。 收集的数据可用于进行申请评估并提出进一步的科学发现。在这项研究中,考虑了Atangana的合格分数衍生物,研究了双链DNA动力学系统的分数差分顺序。将符合的子方程方法应用于系统。分析导致了该模型的一些有趣的新精确解决方案。一溶解溶液,多氧化解决方案和周期性波解决方案是可用于描述结果的三个广泛类别。为了更好地了解发现的解决方案,我们在视觉上研究了其中一些。可以看到DNA链的孤立和反态波,证明了系统的非线性动力学。收集的数据可用于进行申请评估并提出进一步的科学发现。
第2章。流在第2行2.1上。几何思维方式。。。。。。。。。。。。。。。。。。。。。。。。。。2 2.2。固定点和稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.3。人口增长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.4。线性稳定性分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.5。存在和独特理论。。。。。。。。。。。。。。。。。。。。。。。9 2.6。振荡的不可能。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.7。电势。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11第2章作业。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12
每种 RNA 的水平取决于其产生率和衰变率之间的平衡。尽管先前的研究已经测量了组织培养和单细胞生物中整个基因组的 RNA 衰变,但很少有实验是在完整的复杂组织和器官中进行的。因此,尚不清楚在培养细胞中发现的 RNA 衰变决定因素是否在完整组织中保留,以及它们在邻近细胞类型之间是否不同以及在发育过程中是否受到调节。为了解决这些问题,我们通过使用 4-硫尿苷对整个培养的果蝇幼虫大脑进行代谢标记,测量了全基因组的 RNA 合成和衰变率。我们的分析表明,衰变率范围超过 100 倍,并且 RNA 稳定性与基因功能有关,编码转录因子的 mRNA 比参与核心代谢功能的 mRNA 稳定性低得多。令人惊讶的是,在转录因子 mRNA 中,更广泛使用的转录因子与在发育过程中仅短暂表达的转录因子之间存在明显的界限。编码瞬时转录因子的 mRNA 是大脑中最不稳定的。这些 mRNA 的特点是大多数细胞类型中的表观遗传沉默,如其富含组蛋白修饰 H3K27me3 所示。我们的数据表明存在针对这些瞬时表达的转录因子的 mRNA 不稳定机制,从而可以快速高精度地调节它们的水平。我们的研究还展示了一种测量完整器官或组织中 mRNA 转录和衰减率的通用方法,为了解 mRNA 稳定性在调节复杂发育程序中的作用提供了见解。